Những câu hỏi liên quan
NB
Xem chi tiết
PQ
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
TT
26 tháng 1 2022 lúc 22:44

a) Xét tam giác MBD và tam giác MAB:

\(\widehat{DMB}chung.\)

\(\widehat{DBM}=\widehat{BAM}\left(\widehat{CBx}=\widehat{BAD}\right).\)

=> Tam giác MBD \(\sim\) Tam giác MAB (g - g).

Bình luận (1)
PH
Xem chi tiết
DY
Xem chi tiết
TK
Xem chi tiết
EA
Xem chi tiết
TH
Xem chi tiết
ND
Xem chi tiết
CH
25 tháng 12 2017 lúc 10:04

A C B D E

a) Xét tam giác vuông ABC, ta có: \(\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o\)

b) Ta thấy góc \(\widehat{BAD}\) và \(\widehat{BAC}\) là hai góc kề bù, mà \(\widehat{BAC}=90^o\Rightarrow\widehat{BAD}=90^o\)

Xét hai tam giác vuông ABD và ABC có:

BA chung

DA = CA (gt)

\(\Rightarrow\Delta ABD=\Delta ABC\)   (Hai cạnh góc vuông)

c) Do BE là tia phân giác góc ABC nên \(\widehat{ABE}=\widehat{CBE}=30^o\)

Do \(\Delta ABD=\Delta ABC\Rightarrow\hept{\begin{cases}DB=CB\\\widehat{DBA}=\widehat{CBA}=60^o\end{cases}}\)

\(\Rightarrow\widehat{DBE}=\widehat{DBA}+\widehat{ABE}=60^o+30^o=90^o\)

Do BA và CE cùng vuông góc với AC nên BC // CE. Vậy thì \(\widehat{BEC}=\widehat{ABE}=30^o\)

Xét tam giác BCE có: \(\widehat{BEC}=\widehat{CBE}=30^o\) nên nó là tam giác cân. Hay BC = CE

Từ đó ta có : DB = EC

Xét tam giác vuông DBE và ECD có:

DB = EC

DE chung

\(\Rightarrow\Delta DBE=\Delta ECD\)  (Cạnh huyền cạnh góc vuông)

\(\Rightarrow BE=CD\)

Mà CD = CA + AD = 2AC

Vậy nên BE = 2AC.

Bình luận (2)
TL
5 tháng 12 2017 lúc 21:57

Làm ơn gợi ý lời giải câu C. Cảm ơn 

Bình luận (0)
SN
23 tháng 12 2017 lúc 17:50

A B C

Ta có : A + B + C = 180o (tổng 3 góc 1 tam giác)

Mà : A = 90o ; B = 60o

Nên : C = 180 - 90 - 60 = 30o

Vậy ACB = 30o

Bình luận (0)