Tìm n thuộc Z để \(\frac{3n-1}{n^2+3}\)thuộc Z
1: Cho A = \(\frac{n+3}{n+1}\) tìm n thuộc Z để A thuộc Z
2: Cho b = \(\frac{3n-5}{n-4}\)tìm n thuộc Z để B thuộc Z
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
Cho A = \(\frac{6n-2}{3n+1}\); B = \(\frac{2n+1}{3n-1}\)
a ) Tìm n thuộc Z để A thuộc Z ; B thuộc Z
b) Tìm n thuộc Z để A;B lớn nhất ; A;B nhỏ nhất
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời
Tìm n thuộc Z để:
( n-1 ) / ( 3n+3 ) thuộc Z( n+2 ) / ( n^2+3 ) thuộc ZMk hướng dẫn,bn tự giải :
Tìm n \(\in\)Z để các p/s đó \(\in\)Z
=> Cần chứng minh tử \(⋮\)mẫu
Tìm n thuộc N để
B=\(\frac{n^4+3n^3+2n^2+6n-2}{n^2+1}\)thuộc z
Bạn xem lại đề! Theo mình mẫu số =x2+2
Mình nghĩ sửa: \(B=\frac{n^4+3n^3+2n^2+6n-2}{n^2+2}\)
A= 3n-1/n-2
1.Tìm n thuộc Z để A thuộc Z
2.Tìm n thuộc Z để A đạt giá trị nhỏ nhất
3. Tìm n thuộc Z để A đạt giá trị lớn nhất
a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}
Ta có: n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
n - 2 = 5 => n = 7
n - 2 = -5 => n = -3
Vậy n = {3;1;7;-3}
b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất
=> n - 2 đạt giá trị lớn nhất (n - 2 \(\ne\)0 ; n - 2 < 0)
=> n - 2 = -1 => n = 1
Vậy để A có giá trị nhỏ nhất thì n = 1
c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất
=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)
=> n - 2 = 1 => n = 3
Vậy để A đạt giá trị lớn nhất thì n = 3
tìm n thuộc Z
a) \(\frac{n+1}{n-3}\)thuộc Z
b) \(\frac{10n}{5n-3}\)thuộc Z
c) \(\frac{2n-1}{3n+2}\)thuộc Z
Tìm n thuộc Z để các biểu thức sau thuộc Z:
a)\(B=\frac{2n+7}{n+1}\)
b)\(C=\frac{3n-1}{n-2}\)
c)\(D=\frac{2-3n}{n+1}\)
a, \(B=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)
b, \(C=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\in Z\)
<=> \(n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{3;1;7;-3\right\}\)
c, \(D=\frac{-3\left(n+1\right)+5}{n+1}=-3+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)
cục cức chấm mắm
Tìm n thuộc Z để:
(n-1)/(3n+3) € Z
(n+2)/(n^2+3) € Z
Cho 2 phân số : M = \(\frac{3n+1}{4}\) ; N = \(\frac{18}{n+1}\)
a. Tìm n thuộc Z để M là hợp số ; N là số nguyên tố
b. Tìm n thuộc Z để M.N là số nguyên dương
c. Tìm n thuộc Z để M.N = -4\(\frac{1}{2}\)