Những câu hỏi liên quan
LP
Xem chi tiết
CC
13 tháng 4 2019 lúc 21:52

\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)

Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)

\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)

Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)

Vậy A>B

Bình luận (0)
PL
Xem chi tiết
MA
9 tháng 4 2019 lúc 20:20

lớn hơn

Bình luận (0)
PL
10 tháng 4 2019 lúc 20:56

Cảm ơn đã trả lời câu hỏi của mình nhưng bạn viết rõ lời giải ra để mình hiểu nhé

Bình luận (0)
MA
10 tháng 4 2019 lúc 21:52

\(\frac{2016}{2017}>\frac{1}{2}\\ \frac{2017}{2018}>\frac{1}{2}\\ \Rightarrow\frac{2016}{2017}+\frac{2017}{2018}>1\left(Dpcm\right)\)

Bình luận (0)
NT
Xem chi tiết
TM
5 tháng 1 2020 lúc 14:36

Ta có :

\(\frac{1}{51}\)\(\frac{1}{100}\)

\(\frac{1}{52}\)\(\frac{1}{100}\)

      ...

\(\frac{1}{99}\)\(\frac{1}{100}\)

\(\frac{1}{100}\)\(\frac{1}{100}\)

=> S > 50 x \(\frac{1}{100}\)

=> S > \(\frac{50}{100}\)\(\frac{1}{2}\)

Vậy S > \(\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
5 tháng 1 2020 lúc 14:38

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

Ta có \(\frac{1}{51}>\frac{1}{100}\)

        \(\frac{1}{52}>\frac{1}{100}\)

               ...

        \(\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)

                                                                                         ( có 50 phân số)

\(\Rightarrow S>50.\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{2}\)

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa

Bài làm

Ta thấy: \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}+\frac{1}{100}\)có 50 số hạng

=> \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}\)có 49 số hạng

Và \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}\)luôn lớn hơn \(\frac{1}{100}\)

Ta có: \(\frac{1}{100}\Rightarrow\frac{1}{100}.50=\frac{50}{100}=\frac{1}{2}\)

=> \(\frac{1}{100}=\frac{1}{2}\)

=> \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}>\frac{1}{2}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{2}\)

Vậy S > 1/2

# Học tốt #

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
DD
10 tháng 2 2019 lúc 11:06

giúp mình với

Bình luận (0)
NP
1 tháng 12 2024 lúc 9:53

help Khai phong voi

Bình luận (0)
H24
Xem chi tiết
YN
26 tháng 2 2020 lúc 9:43

Ta có \(E=\frac{2018^{99}-1}{2018^{100}-1}\)

\(\Leftrightarrow2018E=\frac{2018^{100}-2018}{2018^{100}-1}\)

\(\Leftrightarrow2018E=1-\frac{2017}{2018^{100}-1}\)   (2)

Lại có \(F=\frac{2018^{98}-1}{2018^{99}-1}\)

\(\Leftrightarrow2018F=\frac{2018^{99}-2018}{2018^{99}-1}\)

\(\Leftrightarrow2018F=1-\frac{2017}{2018^{99}-1}\)  (2)

Mà \(2018^{100}>2018^{99}>0\)

\(\Leftrightarrow2018^{100}-1>2018^{99}-1\)

\(\Leftrightarrow\frac{2017}{2018^{100}-1}< \frac{2017}{2018^{99}-1}\)

\(\Leftrightarrow-\frac{2017}{2018^{100}-1}>-\frac{2017}{2018^{99}-1}\)

\(\Leftrightarrow1-\frac{2017}{2018-1}>1-\frac{2017}{2018^{99}-1}\)   (3)

Từ (1) ;(2) và (3) <=> 2018E > 2018 F > 0

<=> E > F 

Vậy E > F

@@ Học tốt

Chiyuki Fujito

K cần tk

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
PT
9 tháng 10 2017 lúc 21:56

bao minh

Bình luận (0)
KC
9 tháng 10 2017 lúc 22:01

bó cả 2 tay

Bình luận (0)
NA
Xem chi tiết
MN
26 tháng 1 2022 lúc 19:58

:D

Bình luận (0)
TA
Xem chi tiết

a kiếm phân số trung gian để so sánh

Bình luận (0)
PA
Xem chi tiết
H24
29 tháng 7 2018 lúc 23:13

vì  2016/ 2017<1 ,

2017/ 2018 <1

2018 /2019<1

=>  2016/ 2017 + 2017/ 2018 + 2018 / 2019<1+1+1=3

vậy A = 2016/ 2017 + 2017/ 2018 + 2018 / 2019 < 3

Bình luận (0)