Phân tích đa thức thành nhân tử: A=(a+1)(a+3)(a+5)(a+7)+15
Phân tích đa thức thành nhân tử: A=(a+1)(a+3)(a+5)(a+7)+15
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left[\left(a+1\right)\left(a+7\right)\right]\left[\left(a+3\right)\left(a+5\right)\right]+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt: \(a^2+8a+11=t\), khi đó pt trở thành:
\(\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)
\(=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\\ =\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt \(t=a^2+8a+7\) khi đó A thành:
\(t\left(t+8\right)+15=t^2+8t+15\)
\(=\left(t+3\right)\left(t+5\right)=\left(a^2+8a+7+3\right)\left(a^2+8a+7+5\right)\)
\(=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
\(=\left(a^2+8a+10\right)\left(a+2\right)\left(a+6\right)\)
Ta có:
\(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(\left[\left(a+1\right)\left(a+7\right)\left(a+3\right)\left(a+5\right)\right]+15\)
\(\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt \(a^2+8a+7=t\)
\(\Rightarrow t\left(t+8\right)+15\)
\(=t^2+8t+15\)
\(=t\left(t+3\right)+5\left(t+3\right)\)
\(=\left(t+3\right)\left(t+5\right)\)
\(\Rightarrow\left[\left(a^2+8a+7\right)+3\right]\left[\left(a^2+8a+7\right)+5\right]\)
\(=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
\(=\left(a^2+8a+10\right)\left(a^2+2a+6a+12\right)\)
\(=\left(a^2+8a+10\right)\left[a\left(a+2\right)+6\left(a+2\right)\right]\)
\(=\left(a^2+8a+10\right)\left(a+2\right)\left(a+6\right)\)
Phân tích đa thức sau thành nhân tử:(a+1)(a+3)(a+5)(a+7)+15
Đặt \(M=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(M=\left[\left(a+1\right)\left(a+7\right)\right]\left[\left(a+3\right)\left(a+5\right)\right]+15\)
\(M=\left(a^2+7a+a+7\right)\left(a^2+5a+3a+15\right)+15\)
\(M=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt \(p=a^2+8a+11\)
\(\Rightarrow M=\left(p-4\right)\left(p+4\right)+15\)
\(\Rightarrow M=p^2-16+15\)
\(\Rightarrow M=p^2-1\)
\(\Rightarrow M=\left(p-1\right)\left(p+1\right)\)
Thay \(p=a^2+8a+11\)vào M, ta có :
\(M=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)\)
\(M=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
Phân tích đa thức thành nhân tử : (a+1)(a+3)(a+5)(a+7)+15
(a+1)(a+7)(a+3)(a+5)+15
=(a2+8a+7)(a2+8a+15)+15
=(a2+8a+11-4)(a2+8a+11+4)+15
=(a2+8a+11)2-42+15
=(a2+8a+11)2-1
=(a2+8a+11-1)(a2+8a+11+1)
=(a2+8a+10)(a2+8a+12)
Rút gọn biểu thức sau:A=(2x-3)(2x+3)-(x+5)2-(x-1)(x+2)
Phân tích đa thức sau thành nhân tử :A = (a + 1) ( a + 3) (a + 5) ( a + 7) + 15
A=( a +1)(a+3)(a+5)(a+7)+15
=(a+1)(a+7)(a+3)(a+5)+15
=(a2+8a+7)(a2+8a+15)+15
Đặt y=a2+8a+7 ta được :
y(y+8)+15=y2 + 8y +15
=y2 +3y+5y+15
=y(y+3) +5(y+3)
=(y+3)(y+5)
thay y=a2+8a+7 ta được
(a2+8a+7+3)(a2+8a+7+5)
=(a2+8a+10)(a2-2a-6a+12)
=(a2+8a+10)[a(a-2)-6(a-2)]
=(a2+8a+10)(a-2)(a-6)
Phân tích đa thức sau thành nhân tử
A=(a+1)(a+3)(a+5)(a+7)+15
A=(a+1)(a+3)(a+5)(a+7)+15
A=[(a+1)(a+7)][(a+5)(a+3)]+15
A=(a2+8a+7)(a2+8a+15)+15
Đặt a2+8a = v
Ta có :
A=(v+7)(v+15)+15
A= v2+22v+105+15
A= v2+22v+ 120
A= v2+10v+12v+120
A=( v2+10v)+(12v+120)
A=[v(v+10)]+[12(v+10)]
A=(v+10)(v+12) (1)
Thay a2+8a = v vào (1)
A=(a2+8a+10)(a2+8a+12)
phân tích đa thức thành nhân tử
(a+1)(a+3)(a+5)(a+7)+15
=(a^2+8a+7)*(a^2+8a+15)+15
Đặt (a^2+8a+7)=t ta có
t*(t+8)+15=t^2+8t+15=t^2+3t+5t+15=(t+3)*(t+5)(*)
Thay t=a^2+8a+7 vào (*) là được
Biến đổi mỗi phân thức sau thành một phân thức bằng nó có tửlà đa thức A cho trước:
a)4𝑥+3 / 𝑥2 - 5 ; A=12x2+9x( gợiý: Phân tích đa thức A thành nhân tử)
b)8𝑥2 −8𝑥 + 2 / (4𝑥−2)(15−𝑥) ; 𝐴=1−2𝑥 (gợi ý: Phân tích phân thức thành nhân tửrồi rút gọn
phân tích đa thức sau thành phân tử:
A=(a+1).(a+3).(a+5).(a+7)+15
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
\(A=\left(a+1\right).\left(a+3\right).\left(a+17\right)+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
\(=\left(a^2+8a+11-4\right)\left(a^2+8a+11+4\right)+15\)
\(=\left(a^2+8a+11\right)^2-4^2+15\)
\(=\left(a^2+8a+11\right)^2-1\)
\(=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)\)
\(=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
(a2+8a+12) = (a2+2a+6a+12)
= (a+2) (a+6)
Phân tích đa thức thành nhân tử
a)x^5+x+1
b)(x+1)(x+3)(x+5)(x+7)+15
Help meeeeee!🙏
a)x^5+x+1
=x5-x2+x2+x+1
=x2(x3-1)+x2+x+1
=x2(x+1)(x2+x+1)+x2+x+1
=(x2+x+1)(x3+x2+1)
b)(x+1)(x+3)(x+5)(x+7)+15
=(x2+8x+7)(x2+8x+15)+15
Đặt x2+8x+7=t
=> t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+10)(x2+8x+12)