Tính nhanh: \(A=\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{6840}\)
Tính giá trị biểu thức
\(A=\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+\frac{1}{120}+\frac{1}{210}+...+\frac{1}{6840}\)
1,Tính nhanh
\(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)
\(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)
\(=\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\frac{6}{7}=\frac{3}{7}\)
Đặt \(C=\frac{1}{2}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{84}\)
\(\Rightarrow\frac{C}{2}=1+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)
\(\Rightarrow C.\frac{1}{2}=1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)
\(\Rightarrow C.\frac{1}{2}=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\)
\(\Rightarrow C.\frac{1}{2}=1+\frac{1}{2}-\frac{1}{7}\)
\(\Rightarrow C=\left(1+\frac{1}{2}-\frac{1}{7}\right).2\)
Tính nhanh :
A = \(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)
Tính nhanh :
\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)
\(A=2\left(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+\frac{1}{8\cdot10}+\frac{1}{10\cdot12}+\frac{1}{12\cdot14}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{14}\right)\)
\(A=2\cdot\frac{3}{7}\)
\(A=\frac{6}{7}\)
\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)
\(A=\frac{2}{8}+\frac{2}{24}+\frac{2}{48}+\frac{2}{80}+\frac{2}{120}+\frac{2}{168}\)
\(A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\)
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\)
\(A=\frac{1}{2}-\frac{1}{14}\)
\(A=\frac{3}{7}\)
_Chúc bạn học tốt_
A=1/4+1/12+1/24+1/40+1/60+1/84
A=2/8+2/24+2/48+2/80+2/120+2/168
A=1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12+1/12-1/14
A=1/2-1/14
A=7/14-1/14
A=6/14
A=3/7
Tính:
\(B=\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{990}\)
Tính nhanh:
a) 2+5+8+11+...+104+107.
b) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
cái a bằng 1962
cái b bằng 127/192
à quên mình chưa rút gọn phân số đấy đâu bạn ạ
ban rút gọn phân số đấy hộ mình nha
bạn giải từng bước ra giúp mình nhé
Tính nhanh
a) (\(\frac{377}{-231}-\frac{123}{89}+\frac{34}{791}\)) . ( \(\frac{1}{6}-\frac{1}{8}-\frac{1}{24}\))
Ta có :
\(\left(\frac{377}{-231}-\frac{123}{89}+\frac{34}{791}\right).\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{24}\right)\)
\(=A.\left(\frac{4}{24}-\frac{3}{24}-\frac{1}{24}\right)\)
\(=A.0\)
\(=0\)
Chúc bạn học tốt !!!!
\(=\left(\frac{377}{-231}-\frac{123}{89}+\frac{34}{791}\right)\cdot0=0\)
a) Tính tổng \(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
b) Chứng minh: \(A=\frac{1}{2}+\left(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{9240}\right)>\frac{57}{462}\)
Làm lại câu a
\(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(2S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(2S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(2S=1-\frac{1}{100}\)suy ra \(2S=\frac{99}{100}\)
\(S=\frac{99}{100}:2\)suy ra \(S=\frac{99}{200}\)
a, 2S=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(2S=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\)
\(2S=1-\frac{1}{100}\)suy ra \(2S=\frac{99}{100}\)
\(S=\frac{99}{100}:2=\frac{99}{200}\)
Ta có 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100
= 1/2 ( 1 / 1.2 - 1 / 2.3 + 1 / 2.3 - 1 / 3.4 + ...................+ 1 / 97.98 - 1 / 98.99 + 1 / 98.99 - 1 / 99.100)
= 1 / 2 ( 1 / 1.2 - 1 / 99.100 )
= 4949 / 19800
CMR \(A=\frac{1}{2}\cdot\left(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{9240}\right)>\frac{57}{462}\)
Tính:
a) A= \(\left(\frac{-2}{3}+1\frac{1}{4}-\frac{1}{6}\right).\frac{-12}{5}\)
b) B= \(\frac{13}{25}.0,25.3+\left(\frac{8}{15}-1\frac{19}{60}\right):1\frac{23}{24}\)
\(A=\left(\frac{-2}{3}+1\frac{1}{4}-\frac{1}{6}\right).\frac{-12}{5}\)
=\(\left(\frac{-8+15-2}{12}\right).\frac{-12}{5}\)\(=\frac{5}{12}.\frac{-12}{5}=-1\)