phân tích đa thức thành nhân tử :
a, (x+y)2-(x-y)2
b, xy(x+y)+yz(y+z)+xz(x+z)+2xyz
Phân tích đa thức thành nhân tử
a) 8x^3+4x^2-y^3-y^2
b) xy(x+y) +yz(y+z)+xz(x+z)+2xyz
phân tích đa thức thành nhân tử : xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích đa thức thành nhân tử:
xy(x+y) + yz(y+z) + xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích đa thức thành nhân tử xy(x+y) + yz(y+z) + xz(x+z) + 2xyz
nhu the nay:
( xy( x + y )+ xyz )+( yz( y + z )+ xyz )+( xz( a +c )+ xyz)
= xy( x+y+z )+ yz( x + y + z )+ xz( x + y + z )
= ( x + y + z)( xy + yz +zx )
xong rui do dung thi ****.
Phân tích đa thức thành nhân tử:
a)xy(x+y)+yz(y+z)+xz(x+z)+2xyz
b)3(x-3)(x+7)+(x-4)^2
c)4x^2-y^2+4x+1
phân tích đa thức sau thành nhân tử :
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích đa thức thành nhân tử
1) 4x^2-7x-2
2)4x^2+5x-6
3)5x^2-18x-8
4)xy(x+y)-yz(y+z)+xz(x-z)
5) xy(x+y)+yz+xz(x+z)+2xyz
1) \(4x^2-7x-2=4x^2-8x+x-2=\left(4x^2-8x\right)+\left(x-2\right)\)
\(=4x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(4x+1\right)\)
2) \(4x^2+5x-6=4x^2+8x-3x-6=\left(4x^2+8x\right)-\left(3x+6\right)\)
\(=4x\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(4x-3\right)\)
3) \(5x^2-18x-8=5x^2-20x+2x-8=\left(5x^2-20x\right)+\left(2x-8\right)\)
\(=5x\left(x-4\right)+2\left(x-4\right)=\left(x-4\right)\left(5x+2\right)\)
4) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)
\(=xy\left(x+y\right)-y^2z-yz^2+x^2z-xz^2\)
\(=xy\left(x+y\right)+\left(x^2z-y^2z\right)-\left(yz^2+xz^2\right)\)
\(=xy\left(x+y\right)+z\left(x^2-y^2\right)-z^2.\left(x+y\right)\)
\(=xy\left(x+y\right)+z\left(x-y\right)\left(x+y\right)-z^2\left(x+y\right)\)
\(=xy\left(x+y\right)+\left(zx-zy\right)\left(x+y\right)-z^2\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+xz-yz-z^2\right)=\left(x+y\right).\left[x\left(y+z\right)-z\left(y+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(x-z\right)\)
1) 4x2 - 7x - 2 = 4x2 - 8x + x - 2 = 4x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 4x + 1 )
2) 4x2 + 5x - 6 = 4x2 - 8x + 3x - 6 = 4x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 4x + 3 )
3) 5x2 - 18x - 8 = 5x2 - 20x + 2x - 8 = 5x( x - 4 ) + 2( x - 4 ) = ( x - 4 )( 5x + 2 )
4) xy( x + y ) - yz( y + z ) + xz( x - z )
= x2y + xy2 - y2z - yz2 + xz( x - z )
= ( x2y - yz2 ) + ( xy2 - y2z ) + xz( x - z )
= y( x2 - z2 ) + y2( x - z ) + xz( x - z )
= y( x - z )( x + z ) + y2( x - z ) + xz( x - z )
= ( x - z )[ y( x + z ) + y2 + xz ]
= ( x - z )( xy + yz + y2 + xz )
= ( x - z )[ ( xy + y2 ) + ( xz + yz ) ]
= ( x - z )[ y( x + y ) + z( x + y ) ]
= ( x - z )( x + y )( y + z )
5) xy( x + y ) + yz + xz( x + z ) + 2xyz ( đề có thiếu không vậy .-. )
\(4x^2-7x-2=\left(4x^2-8x\right)+\left(x-2\right)=4x\left(x-2\right)+\left(x-2\right)=\left(4x-1\right)\left(x-2\right)\)
\(=4x^2+8x-3x-6=4x\left(x+2\right)-3\left(x+2\right)=\left(4x-3\right)\left(x+2\right)\)
\(=5x^2-18x-8=5x^2-20x+2x-8=5x\left(x-4\right)+2\left(x-4\right)=\left(5x+2\right)\left(x-4\right)\)
\(5=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Phân tích đa thức thành nhân tử
a) xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
b) 2x2 + 2y2 - x2z + z - y2z - 2
a, \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)\(=x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)
\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2\right)\)
\(=xy\left(x+y+z\right)+xz\left(x+z+y\right)+yz\left(y+z\right)\)
\(=x\left(x+y+z\right)\left(y+z\right)+yz\left(y+z\right)\)
\(=\left(y+z\right)\left(x^2+xy+xz+yz\right)\)
\(=\left(y+z\right)\left[x\left(x+z\right)+y\left(x+z\right)\right]\)
\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)
b, \(2x^2+2y^2-x^2z+z-y^2z-2\)
\(=\left(2x^2-x^2z\right)+\left(2y^2-y^2z\right)-\left(2-z\right)\)
\(=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)\)
\(=\left(2-z\right)\left(x^2+y^2-1\right)\)
Phân tích đa thức thành nhân tử)
a) 5x - 5y + ax - ay
b) a3 - a2x - ay + xy
c) xy ( x+ y ) + yz ( y+ z ) + xz ( x + z ) + 2xyz
a)
5x-5y+ax-ay = 5(x-y) +a(x-y) = (x-y)(5+a)
b) a^3 -a^2x-ay+xy = a^2(a-x) -y(a-x) = (a-x)(a^2-y)
c) xy(x+y) +yz(y+z) +xz(x+z) +2xyz = x^2.y+xy^2 +y^2.z+xz^2 +x^2.z+xz^2 +2xyz
= (x^2.y+x^2.z)+(xy^2+xz^2+2xyz)+(y^2.z+yz^2) = x^2(y+z) +x.(y+z)^2 +yz(y+z)
=(y+z)(x^2+x+yz)
Phân tích đa thức thành nhân tử:
a) m x 2 + my - n x 2 - ny; b) mz - 2z - m 2 + 2m;
c) x 2 y 2 + y 3 + z x 2 + yz; d) 2x2 + 4mx + x + 2m.
e) x 4 - 9 x 3 + x 2 - 9x; g) 3 x 2 -2 ( x - y ) 2 - 3 y 2 .
h*) xy(x + y) + yz (y + z) + xz(x + z) + 2xyz.