A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\)
Chứng minh A k phải số nguyên
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng A không phải là số tự nhiên
A= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}\)
Ta có: \(\frac{1}{2^2}>0\)
\(\frac{1}{3^2}>0\)
................
\(\frac{1}{100^2}>0\)
\(\Rightarrow A>0\left(1\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow0< A< 1\)
Vậy A ko là STN.
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\)
Vậy A không phải là một số tự nhiên
Cho A bằng \(\frac{1^2}{2}+\frac{1^2}{3}+\frac{1^2}{4}+...+\frac{1^2}{2015}+\frac{1^2}{2016}\)
Chứng minh rằng A ko phải là số nguyên
Đề bài này kì quặc thật... đáng lẽ mẫu phải được bình phương lên mới t/m A ko phải số tự nhiên
Mong bạn xem lại đề bài
a) Cho \(C=\) \(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+. . .+\(\frac{1}{19}\)
Chứng minh rằng C không phải là số nguyên
b) Cho \(D=2\cdot\)\([\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n\left(n+2\right)}]\)\(với\)\(n\inℕ^∗\)
Chứng minh rằng D không phải là số nguyên
c) Cho \(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Chứng minh rằng E không phải là số nguyên
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
1)Chứng minh các phân số sau là các phân số tối giản:
a)\(A=\frac{12n+1}{30n+2}\)
b)\(B=\frac{14n+17}{21n+25}\)
2)Chứng minh rằng:
a)\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
b)\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
c)\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
Bài 1:
a, Cho S=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\) .Chứng minh rằng \(\frac{2}{5}< S< \frac{8}{9}\)
b, Tìm x thuộc z để phân số \(\frac{x^2-5x-1}{x+2}\)có giá trị là số nguyên
c, Chứng minh rằng \(\left(\frac{7}{65}+1\right)\left(\frac{7}{84}+1\right)\left(\frac{7}{105}+1\right)\left(\frac{7}{124}+1\right)...\left(\frac{7}{153+1}\right)\left(\frac{7}{560}+1\right)< 2\)
d, Chứng minh rằng \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\frac{5}{3^5}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Cho A= \(\frac{1}{1^2}+\frac{1}{2^3}+\frac{1}{3^4}+\frac{1}{4^5}+....+\frac{1}{99^{100}}\)
Chứng tỏ rằng A ko phải là số nguyên.
Bài 1: Cho A=/x+5/+2-x
a) Viết biểu thức A dưới dạng ko có dấu giá trị tuyệt đối
b) tìm giá trị nhỏ nhất của A
Bài 2: Chứng Minh rằng:
\(\frac{1}{2}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
b) Tìm số nguyên a để :
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)là số nguyên
Cho A = 1 - \(\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+.......-\left(\frac{3}{4}\right)^{2017}+\left(\frac{3}{4}\right)^{2018}\)
Chứng minh A không phải là số nguyên
\(\frac{3}{4}A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3-\left(\frac{3}{4}\right)^4+...-\left(\frac{3}{4}\right)^{2018}+\left(\frac{3}{4}\right)^{2019}\)
\(\frac{3}{4}A+A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3-\left(\frac{3}{4}\right)^4+...-\left(\frac{3}{4}\right)^{2018}+\left(\frac{3}{4}\right)^{2019}+1-\frac{3}{4}+\left(\frac{3}{4}\right)^2...\)( Bn tự ghi lại A do máy mình ko đủ độ rộng )
\(\frac{7}{4}A=\left(\frac{3}{4}\right)^{2019}+1\)
\(A=\text{ }\left[\left(\frac{3}{4}\right)^{2019}+1\right]:\frac{7}{4}\)
\(A=\text{ }\frac{\left[\left(\frac{3}{4}\right)^{2019}+1\right].4}{7}\)
=> A là phân số
=> A ko phải số nguyên
Cho A=1+\(\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
CMR:A không phải là số nguyên