phân tích thành nhân tử
\(6x^4+5x^3-38x^2+5x+6\)
Phân tích thành nhân tử 6x^4 +5x^3 -38x^2 +5x +6
Help me ~~~
Phân tích đa thức thành nhân tử
a)x^4-3x^3+4x^2-3x+1
b)x^4+2021x^2-2020x+2021
c)6x^4+5x^3-38x^2+5x+6
Nhanh mk tick
a) \(=x^4-x^3-2x^3+2x^2+2x^2-2x-x+1\)
\(=x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x^3-2x^2+2x-1\right)\left(x-1\right)\)
\(=\left(x^3-x^2-x^2+x+x-1\right)\left(x-1\right)\)
\(=\left(x^2-x+1\right)\left(x-1\right)^2\)
c)
\(=6x^4-12x^3+17x^3-34x^2-4x^2+8x-3x+6\)
\(=6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(6x^3+17x^2-4x-3\right)\left(x-2\right)\)
\(=\left(6x^3+18x^2-x^2-3x-x-3\right)\left(x-2\right)\)
\(=\left(6x^2-x-1\right)\left(x+3\right)\left(x-2\right)\)
\(=\left(2x-1\right)\left(3x+1\right)\left(x+3\right)\left(x-2\right)\)
b)
\(=x^4+1011x^2+1011+\left(1010x^2-2020x+1010\right)\)
\(=x^4+1011x^2+1011+1010\left(x^2-2x+1\right)\)
\(=x^4+1011x^2+1011+1010\left(x-1\right)^2\)
CÓ: \(x^4+1010\left(x-1\right)^2+1011x^2\ge0\forall x\)
=> \(x^4+1010\left(x-1\right)^2+1011x^2+1011\ge1011>0\forall x\)
=> ĐA THỨC b > 0 => Ko ph được thành nhân tử.
Phân tích thành nhân tử
6x^4 - 5x^3 + 8x^2 - 5x + 6
Ai giúp mình với ạ, Cám ơn nhé!
1) Phân tích đa thức thành nhân từ bằng phương pháp đặt biến phụ dạng hồi quy:
a) 6x^4 + 5x^3 - 38x^2 + 5x + 6
b) x^4 - 10x^3 - 15x^2 + 20x + 4
phân tích đa thức
x^4+6x^3+11x^2+6x+1
x^4+x^3+x^2+x+1
6x^4+5x^3-38x^2+5x+6
x^4+5x^3-12x^2+5x+1
a)\(x^4+6x^3+11x^2+6x+1\)
\(=x^4+9x^2+1+6x^3+6x+2x^2\)
\(=\left(x^2+3x+1\right)^2\)
\(x^4+5x^3-12x^2+5x+1\)
\(=\left(x^4-2x^3+x^2\right)+\left(7x^3-14x^2+7x\right)+\left(x^2-2x+1\right)\)
\(=x^2\left(x^2-2x+1\right)+7x\left(x^2-2x+1\right)+\left(x^2-2x+1\right)\)
\(=\left(x^2+7x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x^2+7x+1\right)\left(x-1\right)^2\)
phân tích đa thức
a)x^4+6x^3+11x^2+6x+1
b)x^4+x^3+x^2+x+1
c)6x^4+5x^3-38x^2+5x+6
d)x^4+5x^3-12x^2+5x+1
dễ mà bạn xin 20 phút làm ra giấy nhé :))
a) \(\left(x^4+6x^3+9x^2\right)+2x^2+6x+1\)
\(\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(\left(x^2+3x+1\right)^2\)
b) \(x^4+x^3+x^2+x+1\)
câu b, chúa sẽ c/m x ko tồn tại , và nó là 1 đa thức bất khả Q . trong R
vì lớp 8 chưa học đến số phức
\(x^4+x^3=-x^2-x-1\)
\(x^4+x^3+\frac{1}{4}x^2=\left(\frac{1}{4}x^2-x^2\right)-x-1\)
\(\left(x^2+\frac{1}{2}x\right)^2=-\frac{3}{4}x^2-x-1\)
\(4\left(x^2+\frac{1}{2}x\right)^2=-3x^2-4x-4\)
\(\Delta`=\left(-2\right)^2-\left(-4\right).\left(-3\right)=4-12< 0\)
denta < 0 x vô nghiệm
vậy đa thức trên ko thể phân tích và nó là 1 đa thức bất khả Q
c) ,
\(\left(6x^4-12x^3\right)+\left(17x^3-34x^2\right)-\left(4x^2-8x\right)-\left(3x-6\right)\)
\(6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)\)
\(\left(x-2\right)\left(6x^3+17x^2-4x-3\right)\)
\(\left(x-2\right)\left\{\left(6x^3+18x^2\right)-\left(x^2+3x\right)-\left(x+3\right)\right\}\)
\(\left(x-2\right)\left\{6x^2\left(x+3\right)-x\left(x+3\right)-\left(x+3\right)\right\}\)
\(\left(x-2\right)\left(x+3\right)\left(6x^2-x-1\right)\)
\(\left(x-2\right)\left(x+3\right)\left\{\left(6x^2+\frac{6}{3}x\right)-\left(\frac{9}{3}x+\frac{9}{9}\right)\right\}\)
\(\left(x-2\right)\left(x+3\right)\left\{6x\left(x+\frac{1}{3}\right)-\frac{9}{3}\left(x+\frac{1}{3}\right)\right\}\)
\(\left(X-2\right)\left(X+3\right)\left(X+\frac{1}{3}\right)\left(6x-1\right)\)
d)
\(\left(x^4-x^3\right)+\left(6x^3-6x^2\right)-\left(6x^2-6x\right)-\left(x-1\right)\)
\(x^3\left(x-1\right)+6x^2\left(x-1\right)-6x\left(x-1\right)-\left(x-1\right)\)
\(\left(x-1\right)\left(x^3+6x^2-6x-1\right)\)
\(\left(x-1\right)\left\{\left(x^3-x^2\right)+\left(7x^2-7x\right)+\left(x-1\right)\right\}\)
\(\left(x-1\right)^2\left(x^2+7x+1\right)\)
\(\Delta=49-4=45\)
\(x1,2=\frac{-7+\sqrt{45}}{2},\frac{-7-\sqrt{45}}{2}\)
\(\left(x-1\right)^2\left(x-\frac{7+\sqrt{45}}{2}\right)\left(x-\frac{7-\sqrt{45}}{2}\right)\)
Phân tích đa thức thành nhân tử
A= 6x^4-5x^3+4x^2+2x-1
B=4x^4+4x^3+5x^2+8x-6
C=x^4+x^3-5x^2+x-6
A = 6x4 - 5x3 + 4x2 + 2x - 1
= 6x4 + 3x3 - 8x3 - 4x2 + 8x2 + 4x - 2x - 1
= 3x3. ( 2x + 1 ) - 4x2 ( 2x + 1 ) + 4x ( 2x + 1 ) - ( 2x + 1 )
= ( 2x + 1 ) ( 3x3 - 4x2 + 4x - 1 )
= ( 2x + 1 ) ( 3x3 - x2 - 3x2 + x + 3x - 1 )
= ( 2x + 1 ) [ x2 ( 3x - 1 ) - x ( 3x - 1 ) + ( 3x - 1 ) ]
= ( 2x + 1 ) ( 3x - 1 ) ( x2 - x + 1 )
B = 4x4 + 4x3 + 5x2 + 8x - 6
= 4x4 - 2x3 + 6x3 - 3x2 + 8x2 - 4x + 12x - 6
= 2x3 ( 2x - 1 ) + 3x2 ( 2x - 1 ) + 4x ( 2x - 1 ) + 6 ( 2x - 1 )
= ( 2x - 1 ) ( 2x3 + 3x2 + 4x + 6 )
= ( 2x - 1 ) [ x2 ( 2x + 3 ) + 2 ( 2x + 3 ) ]
= ( 2x - 1 ) ( 2x + 3 ) ( x2 + 2 )
C = x4 + x3 - 5x2 + x - 6
= x4 - 2x3 + 3x3 - 6x2 + x2 - 2x + 3x - 6
= x3 ( x - 2 ) + 3x2 ( x - 2 ) + x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x3 + 3x2 + x + 3 )
= ( x - 2 ) [ x2 ( x + 3 ) + ( x + 3 ) ]
= ( x - 2 ) ( x + 3 ) ( x2 + 1 )
Phân tích đa thức thành nhân tử :
5x3 + 38x2 + 19x - 14
5x3 + 38x2 + 19x - 14
= ( 5x3 + 35x2 ) + ( 3x2 + 21x ) - ( 2x + 14 )
= 5x2 ( x + 7 ) + 3x ( x + 7 ) - 2 ( x + 7 )
= ( x + 7 ) ( 5x2 + 3x - 2 )
= ( x + 7 ) [ ( 5x2 - 2x ) + ( 5x - 2 ) ]
= ( x + 7 ) [ x ( 5x - 2 ) + ( 5x - 2 ) ]
= ( x + 7 ) ( x + 1 ) ( 5x - 2 )
\(5x^3+38x^2+19x-4\)
\(=\left(5x^3+35x^2\right)+\left(3x^2+21x\right)-\left(2x+14\right)\)
\(=5x^2\left(x+7\right)+3x\left(x+7\right)-2\left(x+7\right)\)
\(=\left(5x^2+3x-2\right)\left(x+7\right)\)
\(=\left(5x^2-2x+5x-2\right)\left(x+7\right)\)
\(=\left[x\left(5x-2\right)+\left(5x-2\right)\right]\left(x+7\right)\)
\(=\left(x+1\right)\left(5x-2\right)\left(x+7\right)\)
1)tìm x
\(6x^4+5x^3-38x^2+5x+6=0\)
2) phân tích đa thức thành nhân tử
a)\(x^4+4y^4\)
b)\(a^4+a^2+1\)
c)\(x^3-7x-6\)
MK CẦN RẤT GẤP GIÚP MK VỚI