\(P = {-8 \sqrt{x}-3 \over 4x+1}\) Tìm gtnn của P với x>0 , x khác 1,2
\(P = {-8\sqrt{x}-3\over 4x+1}\) Tìm gtnn của P với x>0 , x khác 1,2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
tìm GTNN của biểu thức \(\frac{-8\sqrt{x}-3}{4x-1}\)
so sánh biểu thức \(\frac{\sqrt{x}}{x+\sqrt{x}+1}với\frac{1}{3}\)
so sánh \(\frac{2\sqrt{x}-2}{4x}với\frac{1}{2}\)
Tìm GTNN của biểu thức: \(A=4x+\frac{1}{4x}-\frac{4\sqrt{x}+3}{x+1}+2016\) với x > 0
Tìm GTNN của các bt sau
C=(2x+5)(5x+14) tất cả trên 2 với x >0
D=(x2/1+4x)
E=x2-2X+1994 tất cả trên x2 với x khác 0
Tìm GTNN,GTLN của
P=4x+3 tất cả trên x2+1
a) A = (2x + 1)/(x² + 2)
Tìm min
ta có: A = (2x + 1)/(x² + 2)
=> 2A = (4x + 2)/(x² + 2)
= (4x + 2 + x² - x² + 2 - 2)/(x² + 2)
= [ (x² + 4x + 4) + (-x² - 2) ]/(x² + 2)
= [ (x + 2)² - (x² + 2) ]/(x² + 2)
= (x + 2)²/(x² + 2) - (x² + 2)/(x² + 2)
= (x + 2)²/(x² + 2) - 1
Ta có: (x + 2)² ≥ 0 và (x² + 2) > 0
=> (x + 2)²/(x² + 2) ≥ 0
=> (x + 2)²/(x² + 2) - 1 ≥ -1
=> 2A ≥ -1
=> A ≥ -1/2
Dấu bằng xảy ra <=> (x + 2)²/(x² + 2) = 0
<=> (x + 2)² = 0
<=> x + 2 = 0
<=> x = -2
Tìm max: A = (2x + 1)/(x² + 2)
= (2x + 2 - 1 + x² - x²)/(x² + 2)
= [ (x² + 2) + (-x² + 2x - 1) ]/(x² + 2)
= [ (x² + 2) - (x² - 2x + 1) ]/(x² + 2)
= [ (x² + 2) - (x - 1)² ]/(x² + 2)
= (x² + 2)/(x² + 2) - (x - 1)²/(x² + 2)
= 1 - (x - 1)²/(x² + 2)
Do (x - 1)² ≥ 0 và (x² + 2) > 0
=> (x - 1)²/(x² + 2) ≥ 0
=> -(x - 1)²/(x² + 2) ≤ 0
=> 1 - (x - 1)²/(x² + 2) ≤ 1
=> A ≤ 1.
Dấu bằng xảy ra <=> -(x - 1)²/(x² + 2) = 0
<=> -(x - 1)² = 0
<=> (x - 1)² = 0
<=> x - 1 = 0
<=> x = 1.
b) Tìm min: B = (8x + 3)/(4x² + 1)
= (8x + 4 - 1 + 4x² - 4x²)/(4x² + 1)
= [ (4x² + 8x + 4) + (-4x² - 1) ]/(4x² + 1)
= [ (4x² + 8x + 4) - (4x² + 1) ]/(4x² + 1)
= [ (2x + 2)² - (4x² + 1) ]/(4x² + 1)
= (2x + 2)²/(4x² + 1) - (4x² + 1)/(4x² + 1)
= (2x + 2)²/(4x² + 1) - 1
Do (2x + 2)² ≥ 0 và 4x² + 1 > 0
=> (2x + 2)²/(4x² + 1) ≥ 0
=> (2x + 2)²/(4x² + 1) - 1 ≥ -1
=> B ≥ -1
Dấu bằng xảy ra <=> (2x + 2)²/(4x² + 1) = 0
<=> (2x + 2)² = 0
<=> 2x + 2 = 0
<=> 2x = -2
<=> x = -1.
Tìm max: B = (8x + 3)/(4x² + 1)
= (8x + 4 - 1 + 16x² - 16x²)/(4x² + 1)
= [ (16x² + 4) + (-16x² + 8x - 1) ]/(4x² + 1)
= [ 4(4x² + 1) - (16x² - 8x + 1) ]/(4x² + 1)
= [ 4(4x² + 1) - (4x - 1)² ]/(4x² + 1)
= 4(4x² + 1)/(4x² + 1) - (4x - 1)²/(4x² + 1)
= 4 - (4x - 1)²/(4x² + 1)
Đến đây lập luận tương tự để chỉ ra maxB = 4 <=> x = 1/4
c) tìm min: C = 2(x² + x + 1)/(x² + 1)
= (2x² + 2x + 2)/(x² + 1)
= [ (x² + 1) + (x² + 2x + 1) ]/(x² + 1)
= [ (x² + 1) + (x + 1)² ]/(x² + 1)
= (x² + 1)/(x² + 1) + (x + 1)²/(x² + 1)
Lập luận tương tự để tìm ra min C = 1 <=> x = -1
tìm max: C = 2(x² + x + 1)/(x² + 1)
= (2x² + 2x + 2)/(x² + 1)
= (3x² - x² + 2x + 3 - 1)/(x² + 1)
= [ (3x² + 3) + (-x² + 2x - 1) ]/(x² + 1)
= [ 3(x² + 1) - (x² - 2x + 1) ]/(x² + 1)
= [ 3(x² + 1) - (x - 1)² ]/(x² + 1)
= 3(x² + 1)/(x² + 1) - (x - 1)²/(x² + 1)
Lập luận tương tự như trên để tìm ra max C = 3 <=> x = 1
tìm GTNN
A= 4x + \(\frac{1}{4x}-\frac{4\sqrt{x}+3}{x+1}+2016\)với x>0
Áp dụng bđt cô si với 2 số dương 4x và 1/4x ta có: 4x+1/4x ≥ 2(1)
Đặt (4√x +3)/ (x+1) =B ; √x =t => x=t^2
ta có : B(t^2 +1) = 4t+3
<=>Bt^2 -4t+B-3=0
Xét delta =b^2 -4ac = 16-4B(B-3)= -4B^2 +12B+16 ≥ 0(*) (Để phương trình có gtnn thì pt phải có nghiệm nên delta ≥ 0)
Từ (*) => B^2 -3B-4 ≤ 0
<=> (B-4)(B+1) ≤ 0
=> -1 ≤ B ≤ 4
=>-B ≥ -4(2)
TỪ (1) và (2) => A ≥ 2+(-4)+2016=2014
Dấu = xảy ra <=> 4x=1/4x và B=4 (tự giải tìm x , ta sẽ được x = 1/4)
Xét \(B=\frac{x+1}{4\sqrt{x}+3}\Leftrightarrow16B=\frac{16x+16}{4\sqrt{x}+3}.\)\(=\frac{\left(4\sqrt{x}+3\right)\left(4\sqrt{x}-3\right)+25}{4\sqrt{x}+3}\)
\(=4\sqrt{x}-3+\frac{25}{4\sqrt{x}+3}=4\sqrt{x}+3+\frac{25}{4\sqrt{x}+3}-6\)
Áp dụng BĐT Cauchy
\(16B\ge2\sqrt{25}-6=4\Leftrightarrow B\ge\frac{1}{4}\)
\(\Rightarrow-\frac{4\sqrt{x}+3}{x+1}\ge-4\)
Áp dụng bđt Cauchy
\(\Rightarrow A\ge2\sqrt{\frac{4x.1}{4x}}-4+2016=2014\)
Vậy Min A=2014 khi x=1/4
Cho P=\(\frac{x+8}{\sqrt{x}+1}\) với x >= 0, x khác 9. Tìm GTNN của P
Giúp mình với mng , mình cảm ơn trc nhoa :>
À thui mình nghĩ ra roài