1+2+3+4+5+...+99+100+101+102
a) A= 1+(-2)+(-3)+4+5(-6)+(-7)+8+9+...+99+100-101+102+103
b) B=1+(-3)+5+(-7)+...+57+(-99)+101
Tính:
a, A= 1+(-2)+(-3)+4+5+(-6)+(-7)+8+...+99-100-101+102+103
b,B=1+(-3)+5+(-7)+...+97+(-99)+101
tính
A=1*3+3*5+5*7+............+97*99+99*101
B=2*4+4*6+6*8+...............+98*100+100*102
tính:
a) A=1*3+3*5+5*7+..........+97*99+99*101
b)B=2*4+4*6+......+98*100+100*102
1+2-3-4+5+6-7-8+...-99-100+101+102=?
1+2-3-4+5+6-7-8+...-99-100+101+102
=(1-2)+(3-4)+...+(101-102)
=(-1)+(-1)+...+(-1)
=(-1).51
=(-51)
= 1 + ( 2-3-4+5) + ( 6-7-8+9) +................+(98-99-100+101) +102
= 1 + 0+ 0 +..........................+ 0 + 102
= 103
MÌNH NHA !!!!!
GIÚP VỚI Ạ: Tính
a, 1*3+ 2*4+ 3*5+ 4*6+...+ 99*101+ 100*102
b, 1*100+ 2*99+ 3*98+...+ 99*2+ 100*1
a) Ta có : $1.3+2.4+3.5+...+99.101+100.102$
$=(2-1)(2+1)+(3-1)(3+1)+(4-1)(4+1)+...+(100-1)(100+1)+(101-1)(101+1)$
$=2^2-1+3^2-1+4^2-1+...+100^2-1+101^2-1$
$=(2^2+3^2+4^2+...+100^2+101^2)-100$
b) $1.100+2.99+3.98+...+99.2+100.1$
$=1.100+2.(100-1)+3.(100-2)+...+99.(100-98)+100.(100-99)$
$=100(1+2+3+...+99+100)-(1.2+2.3+...+99.100)$
$=100.\dfrac{101.100}{2}-\dfrac{99.100.101}{3}=171700$
1+(-2)+(-3)+4+5+(-6)+(-7)+8+.....+99-100-101+102+103
1 + ( -2 ) + (-3 ) + 4 + 5 + ( -6 ) + ..... + 99 - 100 - 101 + 102 + 103
[ 1 + ( -2 )] + [(-3 ) + 4] + [5 + ( -6 )] + ..... +[-98+ 99 ]- 100 - 101 + 102 + 103
= ( -1 ) + 1 + ( -1 ) + ..... + (-1 ) +....+ (-1 )- 100 -101 + 102 + 103
= 0 + 50 - 100 - 101 + 102 + 103
= 54
Mình không chắc
1+(-2)+(-3)+4+5+(-6)+(-7)+8+.....+99-100-101+102+103
= 1 + ( 2 - 3 - 4 + 5 ) + (6 - 7 - 8 + 9 ) + ... ( 98 - 99 -100 + 101 ) +102
= 1 + 0 + 0 + 0 + .... + 102
=103
S=1+2-3-4+5+6-7-8+...-99-100+101+102
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
dao nguoc day so lai
102-101+100-99+...........+8-7+6-5+4-3+2-1
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450