tìm nghiệm nguyên của hệ phương trình sau
x^2+xy-3y^2=9 và 2x^2-655xy-660y^2=1992
Thầy, cô, anh chị nào giúp em với ạ! Em cảm ơn nhiều ạ!
Tìm nghiệm nguyên của phương trình:
a) xy + x - y = 6
b) 3xy - x + 3y = 2
c) xy + 2x - 3y = 9
a) Tìm nghiệm nguyên của phương trình sau : \(xy-2x-3y+1=0\)
b) Giải phương trình : \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
xy - 2x - 3y + 1 = 0
<=> x(y - 2) = 3y - 1
<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)
Để x nguyên thì (y - 2) phải là ước của 5 hay
(y - 2) = (1, 5, - 1, - 5)
Giải tiếp sẽ ra
Tìm nghiệm nguyên của phương trình:
\(2x^2+3y^2+4x=19\)
tìm nghiệm nguyên dương của phương trình:
\(xy+yz+xz=xyz+2\)
\(2x^2+3y^2+4x=19\)
<=> \(2\left(x^2+2x+1\right)+3y^2=21\)
<=> \(2\left(x+1\right)^2+3y^2=21\)
<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)
=> \(y^2\le7\)(1)
Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)
=> 21 - 3y^2 là số chẵn => 3y^2 là số lẻ => y^2 là số chính phương lẻ (2)
Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1
=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4
Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)
giải hệ pt: \(\left\{{}\begin{matrix}x^2+2xy-3y^2=-4\\2x^2+xy+4y^2=5\end{matrix}\right.\)
tìm m để phương trình sau có 3 nghiệm phân biệt
\(x^4-4x^3+x^2+6x+m+2=0\) có 3 nghiệm phân biệt x1,x2,x3
\(\left\{{}\begin{matrix}x^2+2xy-3y^2=-4\left(1\right)\\2x^2+xy+4y^2=5\left(2\right)\end{matrix}\right.\)\(với\)\(y=0\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}x^2=-4\\2x^2=5\end{matrix}\right.\)\(\left(loại\right)\)
\(y\ne0\) \(đặt:x=t.y\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}t^2y^2+2ty^2-3y^2=-4\left(3\right)\\2t^2y^2+ty^2+4y^2=5\left(4\right)\end{matrix}\right.\)
\(\Leftrightarrow5t^2y^2+10ty^2-15y^2=-8t^2y^2-4ty^2-16y^2\)
\(\Leftrightarrow13t^2y^2+14ty^2+y^2=0\)
\(\Leftrightarrow13t^2+14t+1=0\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{1}{13}\\t=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{13}y\left(5\right)\\x=-y\left(6\right)\end{matrix}\right.\)
\(thay\left(5\right)và\left(6\right)\) \(lên\left(1\right)hoặc\left(2\right)\Rightarrow\left(x;y\right)=\left\{\left(1;-1\right);\left(-1;1\right);\left(-\dfrac{1}{\sqrt{133}};\dfrac{13}{\sqrt{133}}\right)\right\}\)
\(pt:x^4-4x^3+x^2+6x+m+2=0\)
\(\Leftrightarrow x^4-4x^3+4x^2-3x^2+6x+m+2=0\)
\(\Leftrightarrow\left(x^2-2x\right)^2-3\left(x^2-2x\right)+m+2=0\left(1\right)\)
\(đặt:x^2-2x=t\ge-1\)
\(\Rightarrow\left(1\right)\Leftrightarrow t^2-3t=-m-2\)
\(xét:f\left(t\right)=t^2-3t\) \(trên[-1;+\text{∞})\) \(và:y=-m-2\)
\(\Rightarrow f\left(-1\right)=4\)
\(f\left(-\dfrac{b}{2a}\right)=-\dfrac{9}{4}\)
\(\left(1\right)\) \(có\) \(3\) \(ngo\) \(pb\Leftrightarrow-m-2=4\Leftrightarrow m=-6\)
a) giải hệ phương trình
\(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}=\frac{5}{2}\end{cases}}\)
b) giải pt \(\sqrt{2x+1}-\sqrt{3x}=x-1\)
c) tìm nghiệm nguyên dương của pt x3y+xy3-3x2-3y2=17
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
c) \(x^3y+xy^3-3x^2-3y^2=17\)
\(\Leftrightarrow xy\left(x^2+y^2\right)-3\left(x^2+y^2\right)=17\Leftrightarrow\left(x^2+y^2\right)\left(xy-3\right)=17\)
\(\Leftrightarrow\left(x^2+y^2\right),\left(xy-3\right)\inƯ\left(17\right)\)
Do \(x^2+y^2\ge0\Rightarrow x^2+y^2\in\left\{1;17\right\}\)
TH1: \(\hept{\begin{cases}x^2+y^2=1\\xy-3=17\end{cases}}\Rightarrow\hept{\begin{cases}\frac{400}{y^2}+y^2=1\\x=\frac{20}{y}\end{cases}}\) (vô nghiệm)
TH2: \(\hept{\begin{cases}x^2+y^2=17\\xy-3=1\end{cases}}\Rightarrow\hept{\begin{cases}\frac{16}{y^2}+y^2=17\\x=\frac{4}{y}\end{cases}}\)
Ta có bảng:
y2 | 16 | 16 | 1 | 1 |
y | 4 | -4 | 1 | -1 |
x | 1 | -1 | 4 | -4 |
Vậy các cặp số nguyên thỏa mãn là (x;y) = (1;4) ; (-1;-4) ; (4;1) ; (-4;-1).
Tìm nghiệm nguyên của hệ phương trình sau
(x+y+z)/2=50 và 5x+3y+z/3=100
tìm nghiệm nguyên của phương trình x^2-12y^2+xy-x+3y+5=0
\(x^2-12y^2+xy-x+3y+5=0\)
\(\Leftrightarrow x^2+x\left(y-1\right)+\left(3y-12y^2+5\right)=0\)
Xét \(\Delta=\left(y-1\right)^2-4.1.\left(3y-12y^2+5\right)=49y^2-14y-19=\left(7y-1\right)^2-20\ge0\)
Để x nhận giá trị nguyên thì \(\Delta\) là số chính phương.
Suy ra \(\left(7y-1\right)^2-20=k^2\Leftrightarrow\left(7y-k-1\right)\left(7y+k+1\right)=20\)
Xét các trường hợp được y = 1 thỏa mãn.
Khi đó ta suy ra \(x=2\) hoặc \(x=-2\)
Vậy (x;y) = (-2;1) ; (2;1)
Tìm nghiệm nguyên của các phương trình sau
\(a,x^2+y^2+xy+3x-3y+9\)\(=0\)
\(b,x^2-4x-2y+xy+1=0\)
b ) x2 - 4x - 2y + xy + 1 = 0
( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0
( x - 2 )2 - y ( 2 - x ) = 3
( 2 - x ) ( 2 - x - y ) = 3
đến đây lập bảng tìm ra x,y
a) x2 + y2 + xy + 3x - 3y + 9 = 0
2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0
( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0
( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0
\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0
\(\Rightarrow\)x = -3 ; y = 3
SKT_NTT câu b bạn làm rõ ra hơn có đc không
Tìm nghiệm nguyên của các phương trình sau đây:
a) \(y^2+xy-2x-5y+5=0\)
b) \(2xy-10x-3y=-14\)
c) \(x^2-xy+4x-3y+2=0\)