Cho hình thang vuông ABCD có góc A =góc B = 90° ;Ab = BC =1\2AD .
A,tính góc D và góc C
B,Chứng minh AD vuông góc với CD
C,biết AB =5cm,tính chu vi hình thang ABCD
1. Cho hình thang ABCD có góc A= góc B= 90 độ, góc B=30 độ, CD=30cm, CA vuông góc với CB. Tính diện tích hình thang ABCD
Cho hình thang vuông ABCD có góc A = góc D = 90 độ, BC vuông góc BD, AB=2cm, CD=8cm.
a) Tính góc ABC và góc C
b) Tính diện tích hình thang ABCD.
a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)
Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)
Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)
ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)
\(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)
\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)
\(\Rightarrow\widehat{ABC}=150^0\)
b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)
Diện tích hình thang ABCD là:
\(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\)
Chúc bạn học tốt.
thang cho dung hoi nua
1, Cho hình thang ABCD ( AB // CD ) có góc B - góc C = 24° , góc A = 1,5 góc D . Tính các góc của hình thang .
2. Cho hình thang vuông ABCD ( góc A = góc D = 90°) đường chéo BD vuông góc với cạnh bên BC và BD = BC :
a, Tính các góc của hình thang .
b, Biết AB = 3 cm , Tính độ dài các cạnh BC,CD .
Cho hình thang ABCD có góc A = D = 90°, B =60°, CD = 30cm, CA vuông góc với CB. Tính S hình thang.
dùng tỉ số lượng giác lần lượt tính được AD= \(10\sqrt{3}\) cm;AC= \(20\sqrt{3}\) cm;AB=20cm
do đó S hình thang\(=\frac{\left(ab+cd\right)\cdot ad}{2}=\frac{\left(20+30\right)\cdot10\sqrt{3}}{2}=\frac{500\sqrt{3}}{2}cm^2\)
Vậy....
Cách làm của bạn đúng rồi nhưng AB=40 cứ ko phải 20 nha
cho hình thang vuông ABCD có góc A=góc B=90 độ,BD vuông góc BC,BD=BC
a)tính góc B và góc C của hình thang
b)cmr:AB=AD
c)cmr:CD=2AB
cho hình thang vuông ABCD có góc A=góc B=90 độ,BD vuông góc BC,BD=BC
a)tính góc B và góc C của hình thang
b)cmr:AB=AD
c)cmr:CD=2AB
Cho hình thang ABCD có góc A =góc D = 90 độ; góc B = 60 độ, CD =30, CA vuông góc vs CB. Tính diện tích hình thang
Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ (cùng phụ với CAB)
=> AC = 2AD
Áp dụng Pytago ta có:
AC2 = AD2 + DC2
<=> 4AD2 = AD2 + 900
<=> AD2 = 300
<=> \(AD=10\sqrt{3}\)
Kẻ CH vuông với AB
AHCD là hình chữ nhật (có góc A=D=H = 900)
=> AH = CD = 30; CH = AD = \(10\sqrt{3}\)
Tgiac ACB vuông tại C, ta có:
CH2 =HA.HB
=> \(HB=\frac{CH^2}{HA}=10\)
=> AB = AH + HB = 40
\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)
Cho hình thang ABCD có góc A =góc D = 90 độ; góc B = 60 độ, CD =30, CA vuông góc vs CB. Tính diện tích hình thang
Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ (cùng phụ với CAB)
=> AC = 2AD
Áp dụng Pytago ta có:
AC2 = AD2 + DC2
<=> 4AD2 = AD2 + 900
<=> AD2 = 300
<=> \(AD=10\sqrt{3}\)
Kẻ CH vuông với AB
AHCD là hình chữ nhật (có góc A=D=H = 900)
=> AH = CD = 30; CH = AD = \(10\sqrt{3}\)
Tgiac ACB vuông tại C, ta có:
CH2 =HA.HB
=> \(HB=\frac{CH^2}{HA}=10\)
=> AB = AH + HB = 40
\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)
Cho hình thang ABCD có góc A =góc D = 90 độ; góc B = 60 độ, CD =30, CA vuông góc vs CB. Tính diện tích hình thang
Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ (cùng phụ với CAB)
=> AC = 2AD
Áp dụng Pytago ta có:
AC2 = AD2 + DC2
<=> 4AD2 = AD2 + 900
<=> AD2 = 300
<=> \(AD=10\sqrt{3}\)
Kẻ CH vuông với AB
AHCD là hình chữ nhật (có góc A=D=H = 900)
=> AH = CD = 30; CH = AD = \(10\sqrt{3}\)
Tgiac ACB vuông tại C, ta có:
CH2 =HA.HB
=> \(HB=\frac{CH^2}{HA}=10\)
=> AB = AH + HB = 40
\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)