Những câu hỏi liên quan
TL
Xem chi tiết
ND
Xem chi tiết
DN
Xem chi tiết
NN
Xem chi tiết
IS
22 tháng 2 2020 lúc 9:58

a) S=\(1-3+3^2-3^3+...+3^{98}-3^{99}.\)

=\((1-3+3^2-3^3)+...+3^{96}-3^{97}+3^{98}-3^{99}.\)

=\(\left(1-3+3^2-3^3\right)+..+3^{96}\left(1-3+3^2-3^3\right)\)

=(\(1-3+3^2-3^3\))(1+\(3^4+...+3^{92}+3^{96})\)

=-20(1+\(3^4+...+3^{92}+3^{96})\)là bội của -20

Bình luận (0)
 Khách vãng lai đã xóa
IS
22 tháng 2 2020 lúc 10:02

b)S = 1 - 3 + 3^2 - 3^3 +...+ 3^98 - 3^99

=> 3S= 3 - 3^2 + 3^3 - 3^4 +...+ 3^99 - 3^100

=> 3S+S = 1 - 3^100

=>4S=1 - 3^100

=> S = \(\frac{1-3^{100}}{^4}\)

Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1

Bình luận (0)
 Khách vãng lai đã xóa
NN
22 tháng 2 2020 lúc 10:03

Bạn có làm được câu b) không vậy

Bình luận (0)
 Khách vãng lai đã xóa
PM
Xem chi tiết
NT
22 tháng 8 2019 lúc 16:19

\(S=1+3+\cdot\cdot+3^{99}\)

\(\Rightarrow3S=3+3^2+\cdot\cdot\cdot+3^{100}\)

\(\Rightarrow3S-S=\left(3+\cdot\cdot\cdot+3^{100}\right)-\left(1+3+\cdot\cdot\cdot+3^{99}\right)\)

\(\Rightarrow2S=3^{100}-1\)

\(\Rightarrow2S+1=3^{100}\)

Chứng tỏ 2S +1 là luỹ thừa của 3

Bình luận (0)

25+1=26 làm sao là lũy thừa của 3 đc!

Chắn đề sai rùi bn ạ,bn nhìn lại đề xem!

#Hok_tốt

Bình luận (0)
PM
5 tháng 9 2019 lúc 15:34

điền chữ số vào *65 để được số có 3 chữ số N=65 thỏa mãn điều kiện

a,N chia hết cho 2 

b,N chia hết cho 5 

c,N chia hết cho 2 và 5

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
NH
2 tháng 2 2019 lúc 22:12

bn ấn vào cái hình có chữ M nằm ngang rồi viết lạ đề đc ko bn viết số mũ bn nhấn vào cái có chữ x rồi có cái hình vuông màu xám ở trên chữ x

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
DB
2 tháng 2 2019 lúc 21:53

\(a,S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)

\(=\left(1-3+3^2-3^3\right)\left(1+3^4+...+3^{92}+3^{96}\right)\)

\(=-20.\left(1+3^4+...+3^{92}+3^{96}\right)\)là bội của -20

Bình luận (0)
DB
2 tháng 2 2019 lúc 22:03

b, \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)

\(3S+S=1-3^{100}\)

\(S=\frac{1-3^{100}}{4}\)

Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1

Bình luận (0)