Cho a,b,c >0. CMR : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không phải là số nguyên
cho a,b,c >0 CMR\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là số nguyên
#)Giải :
Ta có : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
Lại có : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow\) M không phải là số nguyên
Vì a,b,c, > 0 nên
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)(1)
\(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{a+b}{a+b+c}\)(2)
\(\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)(3)
Cộng từng vế của (1), (2), (3) suy ra \(1< M< 2\)
Vậy M không là số nguyên
Vì \(a,b,c>0\) nên ta có:
\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}\)
\(\Rightarrow M< \frac{a+c+a+b+b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(1)
Lại có:
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a+b+c}{a+b+c}=1\)(2)
Từ (1) và (2) \(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không phải là số nguyên (đpcm)
cho : M= \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) ( a,b,c>0)
CMR: M không phải là số nguyên
thôi các bạn đừng cãi nhau nữa !
Cho a,b,c,d là các số nguyên. CMR:
M= \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không phải là số nguyên
M = a/a+b + b/b+c + c/c+a
M > a/a+b+c + b/a+b+c + c/a+b+c
M > a+b+c/a+b+c
M > 1 (1)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
M = a/a+b + b/b+c + c/c+a
M < a+c/a+b+c + b+c/a+b+c + b+c/a+b+c
M < 2.(a+b+c)/a+b+c
M < 2 (2)
Từ (1) và (2) => 1 < M < 2, không là số nguyên ( đpcm)
*Ta có :
a/a+b > a/a+b+c (1)
b/b+c > b/a+b+c (2)
c/c+a > c/a+b+c (3)
Từ (1); (2) và (3) suy ra:
a/a+b + b/b+c + c/c+a > a/a+b+c + b/a+b+c + c/a+b+c = a+b+c/a+b+c = 1 (a)
*Ta có công thức:
- Với a; b và c thuộc N* ta có thể rút ra:
a/b < a+c/b+c
Áp dụng công thức trên, ta có:
a/a+b < a+c/a+b+c (4)
b/b+c < b+a/a+b+c (5)
c/c+a < c+b/a+b+c (6)
Từ (4); (5) và (6) suy ra:
a/a+b + b/b+c + c/c+a < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = a+c+b+a+c+b/a+b+c = 2a+2b+2c/a+b+c = 2(a+b+c)/a+b+c = 2 (b)
Từ (a) và (b) suy ra:
1 < a/a+b + b/b+c + c/c+a < 2
=> 1 < M < 2
=> M không phải là số nguyên.
Vậy M không phải là số nguyên.
Để M không phải là số nguyên thì cần chứng minh 1 < m < 2
Cm : M > 1
a/a + b > a/a + b + c ; b/b + c > b/a + b +c ; c/c +a > c/a + b +c
suy ra M > a/ a + b + c + b/ a + b + c + c/a +b +c
hay M > a + b + c / a +b + c = 1
Cm : M < 2
a/ a + b < 2a/a + b + c , b/b +c < 2b/a +b +c , c/c+a < 2c/a+ b +c
nên M < 2a + 2b +2c / a + b + c
hay M < 2
Vì 1 < M < 2 nên M không phải là số nguyên
Cho a,b,c > 0. CMR \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học toán với OnlineMath
Cho\(S=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\) với a,b,c,d là các số nguyên dương.
CMR: S không phải là số tự nhiên
Với a,b,c,d là các số nguyên dương ta luôn có :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự : \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
Cộng vế với vế ta được :
\(\frac{a+b+c+d}{a+b+c+d}< S< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}\rightarrow1< S< 2\)
Do đó , S không là số tự nhiên.
\(\frac{d}{ưưda}ư\)
Cho a, b, c, d là 4 số nguyên bất kỳ.
CMR:
\(x=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+c+d}\)
không phải là 1 số nguyên
ban vào link này nhé
https://olm.vn/hoi-dap/question/109536.html
cho a,b,c>0
cm \(\frac{a}{a+b}+\frac{c}{c+a}+\frac{b}{b+c}\)không phải là số nguyên
Đặt D= a/(a+b)+b/(b+c)+c/(c+a)
ta có:D>a/(a+b+c)+b/(b+c+a)+c/(c+a+b)=(a+b+c)/(a+b+c)=1 (*)
Mặt khác, ta có: D =( 1 - b/a+b)+(1 - c/b+c)+(1 - a/c+a) < 3-(b/a+b+c + c/b+c+a + a/c+a+b)=3-1=2
=> D<2 (**)
Từ (*);(**) =>1<D<2 nên D ko là số nguyên (đpcm)
xin lỗi bn vì mk ko gõ trong fx được, chỗ nào ko hiểu thì nhắn tin cho mk
đặt \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Ta có: \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)
=>A>1 (1)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\left(1-\frac{b}{a+b}\right)+\left(1-\frac{c}{b+c}\right)+\left(1-\frac{a}{c+a}\right)<3-\left(\frac{b}{a+b+c}+\frac{c}{b+c+a}+\frac{a}{c+a+b}\right)=3-1=2\)
=>A<2(2)
từ (1);(2)=>1<A<2=> A ko là số nguyên=>đpcm
cho a,b,c > 0 . Chứng tỏ rằng \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là số nguyên
Cho \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)với a,b,c >0
Chứng tỏ rằng M không phải là số nguyên.
ta có\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)
ta lại có tương tự M<2
suy ra Mko ơphair số nguyên