Tìm GTLN hoặc GTNN của
a.\(\frac{2x^2-2x+1}{x^2}\)
b.\(\frac{2018x^2-4x+1}{x^2}\)
Nhanh mik k nha
Tìm GTNN hoặc GTLN của các biểu thức: A 4 x 2 4 x11
D x 2 2 x y 2 4 y 7
B 5 – 8 x – x 2
E = 5 – x 2 + 2x – 4y2 – 4y
C = 4x – x 2 .
F = (x 2 2x x 2 2x 2
nhanh giúp mik đc k ạ
Câu 1: TIìm GTLN, GTNN của:
a) \(B=\frac{4x^2+2x+1}{4x^2+1}\)
b)\(E=\frac{3x^2-8x+13}{x^2+1}\)
c)\(D=\frac{8x+3}{4x^2+1}\)
d)\(C=\frac{4x+1}{4x^2+2}\)
e)\(A=\frac{2x+1}{x^2+2}\)
Câu 2: Tìm GTLN của:
a) \(A=\frac{x^2+10}{2x^2+3}\)
b)\(B=\frac{3y^2-6y+27}{2y^2-4y+10}\)
Câu 3: Tìm GTNN của:
a)\(A=\frac{2x^2+6x+1}{x^2+2x+2}\)
b)\(B=\frac{x^2-2016}{4\left(x^2+1\right)}\)
a)Tìm GTNN của A\(=\left(2x+\frac{1}{3}\right)^{44}-1\)
b)Tìm GTLN của B=\(\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
Giúp mik nha, Cần gấp lắm. Ai đúng mik T
Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)
Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)
Vậy Min A = -1 <=> X = -1/6
a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)
Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6
b) Sửa đề \(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
Ta có \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\forall x\)
=> \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\forall x\)
Dấu "=" xảy ra <=> \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\)
Vậy Max B = 3 <=> x = 3/10
1. TÌm GTNN:
a, M=\(\frac{x^4+1}{\left(x^2+1\right)^2}\)
b, N=\(\frac{x^2}{-4y^2+20xy-29x^2}\)
2. Tìm GTNN và GTLN của biểu thức:
a,A=\(\frac{2x^2-2x+9}{x^2+2x+5}\)
b, B=\(\frac{4x^3}{x^2+1}\)
c, C=\(\frac{2\left(x^2+x+1\right)}{x^2+1}\)
d, D=\(\frac{x^2+xy+y^2}{x^2+y^2}\)với x khác 0
Tìm GTLN ,GTNN :A-\(\frac{x^2+4x+6}{x^2+2x+1}\)
Ai xong đầu mk tick lun cả cách làm nha
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
Tìm GTLN, GTNN của:
\(A=\frac{5}{1-4x-7x^2}\)
\(B=\frac{x^{2^{ }}-3x+2}{\left(2x+3\right)^2}\)
\(C=\frac{2x^2}{3x^2-2x+1}\)
Aii đúng mik tick cho!!!!