Những câu hỏi liên quan
NN
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết
NH
11 tháng 4 2023 lúc 15:30

M =  \(\dfrac{3n+19}{n-1}\)

\(\in\)N* ⇔ 3n + 19 ⋮ n - 1

           ⇔ 3n - 3 + 22 ⋮ n - 1

         ⇔ 3( n -1) + 22 ⋮ n - 1

         ⇔ 22 ⋮ n - 1

        ⇔  n - 1 ⋮ \(\in\){ -22; -11; -2; -1; 1; 2; 11; 22}

        ⇔ n \(\in\) { -21; -10; -1; 0; 2; 3; 12; 23}

          Vì n \(\in\) N* ⇒ n \(\in\) {0; 2; 3; 12; 23}

b, Gọi d là ước chung lớn nhất của 3n + 19 và n - 1

Ta có:  \(\left\{{}\begin{matrix}3n+19⋮d\\n-1⋮d\end{matrix}\right.\) 

        ⇒  \(\left\{{}\begin{matrix}3n+19⋮d\\3n-3⋮d\end{matrix}\right.\)

     Trừ vế cho vế ta được: 

           3n + 19 - (3n - 3) ⋮ d

       ⇒ 3n + 19 - 3n + 3 ⋮ d

       ⇒ 22 ⋮ d 

Ư(22) = { - 22;  -11; -2; -1; 1; 2; 22}

⇒ d \(\in\) {1; 2; 11; 22}

nếu n chẵn 3n + 19 lẻ; n - 1 lẻ => d không chia hết cho 2, không chia hết cho 22

nếu n # 11k + 1 => n - 1 # 11k => d không chia hết cho 11

Vậy để phân số M tối giản thì

\(\in\) Z = { n \(\in\) Z/ n chẵn và n # 11k + 1 ; k \(\in\)Z}

 

 

 

       

Bình luận (0)
HK
Xem chi tiết
H24
Xem chi tiết
LD
28 tháng 4 2016 lúc 22:38

Gọi d là ƯC(n+1 ; n+2)

=> n+1 chia hết cho d  và n+2 chia hết cho d

=>(n+2)-(n+1) chia hết d

=> 1 chia hết d

=> D=1

Vậy n+1/n+2 là phân số tối giản

Bình luận (0)
LD
28 tháng 4 2016 lúc 22:37

Để n+3/n-2 \(\in\) Z

=> n+3 chia hết n-2

=> n-2 + 5 chia hết n-2

=> 5 chia hết n-2

=> n-2 \(\in\) Ư(5)={-1;1;-5;5}

Ta có: 

n-2-11-55
n13-37
Bình luận (0)
HQ
28 tháng 4 2016 lúc 22:45

 Ta có \(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)

Để \(\frac{n+3}{n-2}\in Z\) thì \(\frac{5}{n-2}\in Z\Leftrightarrow\left(n-2\right)\in\text{Ư}\left(5\right)=\text{ }\left\{-5;-1;1;5\right\}\)

\(\left(+\right)n-2=-5\Leftrightarrow n=-3\left(tm\right)\)

\(\left(+\right)n-2=-1\Leftrightarrow n=1\left(tm\right)\)

\(\left(+\right)n-2=1\Leftrightarrow n=3\left(tm\right)\)

\(\left(+\right)n-2=5\Leftrightarrow n=7\left(tm\right)\)

Vậy để \(\frac{n+3}{n-2}\in Z\) thì \(n\in\left\{-3;1;3;7\right\}\)

Bình luận (0)
PT
Xem chi tiết
NH
17 tháng 3 2021 lúc 20:39

bài này dễ mà

Bình luận (0)
 Khách vãng lai đã xóa
ZN
17 tháng 3 2021 lúc 20:50

a, Để a là phân số thì

\(n+2\ne0\)\(\Leftrightarrow n\ne-2\)

b, Để \(A\in Z\)\(\Rightarrow5⋮n+2\)

Hay \(n+2\inƯ\left(5\right)\)

Ta có các \(Ư\left(5\right)\in\left\{1;-1;5;-5\right\}\)

Vậy có các trường hợp :

n + 2 = 1 => n = -1

n + 2 = -1 => n = -3

n + 2 = 5 => n = 3

n + 2 = -5 => n = -7

Vậy để \(A\in Z\Rightarrow n\in\left\{-1;-3;3;-7\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
LY
Xem chi tiết
NT
Xem chi tiết
H24
17 tháng 3 2022 lúc 14:20

4

Bình luận (0)
H24
17 tháng 3 2022 lúc 14:23

4

Bình luận (0)
CD
1 tháng 3 2023 lúc 20:03

4 nha 

Bình luận (0)
HA
Xem chi tiết
DH
21 tháng 3 2021 lúc 17:16

Ta sẽ tìm \(n\)để \(\frac{n+19}{n-2}\)không là phân số tối giản. 

\(\frac{n+19}{n-2}=\frac{n-2+21}{n-2}=1+\frac{21}{n-2}\)không tối giản suy ra \(\frac{21}{n-2}\)không tối giản

Suy ra \(n-2\inƯ\left(21\right)=\left\{-21,-7,-3,-1,1,3,7,21\right\}\)

\(\Rightarrow n\in\left\{-19,-5,-1,1,3,5,9,23\right\}\).

Vậy \(n\notin\left\{-19,-5,-1,1,3,5,9,23\right\}\)thì \(\frac{n+19}{n-2}\)là phân số tối giản. 

Bình luận (0)
 Khách vãng lai đã xóa