Những câu hỏi liên quan
TH
Xem chi tiết
VC
Xem chi tiết
OP
5 tháng 8 2016 lúc 15:49

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

Bình luận (0)
MT
8 tháng 10 2019 lúc 20:53

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

Bình luận (0)
TB
17 tháng 7 2021 lúc 18:25

phản chứng : giả sử tất cả thuộc Q a đặt a= căn 2+ căn 3(a thuộc Q) . bình phương 2 vế ta có a^2=5+2 căn 6=> căn 6 = a^2-5/2 thuộc Q => vô lí

b đặt căn 2 + căn 3 + căn 5 = a. chuyển căn 5 sang vế a bình phương lên ta có 2 căn 6=a^2-2 căn 5 a

bình phương 1 lần nữa =>căn 5= a^4+20a^2-24/4a^3 thuộc Q => vô lí

c bình phương lên => căn 2=A-1 thuộc Q => vô lí

d tương tự căn 3=Bn-mn thuộc Q => vô lí

chúc bạn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
ND
20 tháng 1 2022 lúc 11:06

Nào , cop đi , cop đi 

HT

:)))))))))))

@@@@@@@@@@@

Bình luận (0)
 Khách vãng lai đã xóa
PL
20 tháng 1 2022 lúc 11:10

 ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ

Bình luận (0)
 Khách vãng lai đã xóa
JN
20 tháng 1 2022 lúc 11:10

????????????

Bình luận (0)
 Khách vãng lai đã xóa
SK
Xem chi tiết
NH
27 tháng 5 2017 lúc 11:30

Căn bậc hai. Căn bậc ba

Bình luận (0)
NT
4 tháng 9 2019 lúc 21:40

a. Giả sử \(\sqrt{3}\) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.

Ta có: (√3 )2 = (a/b )2 hay a2 = 3b2 (1)

Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.

Thay a = 3c vào (1) ta được: (3c)2 = 3b2 hay b2 = 3c2

Kết quả trên chứng tỏ b chia hết cho 3.

Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.

Vậy √3 là số vô tỉ.

b. * Giả sử 5√2 là số hữu tỉ a, nghĩa là: 5√2 = a

Suy ra: √2 = a / 5 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 5√2 là số vô tỉ.

* Giả sử 3 + √2 là số hữu tỉ b, nghĩa là:

3 + √2 = b

Suy ra: √2 = b - 3 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 3 + √2 là số vô tỉ.

Bình luận (0)
H24
Xem chi tiết
H24
20 tháng 10 2019 lúc 19:33

                                                      Bài giải

a, Ta có :

\(\sqrt{2}\) là số vô tỉ \(\Rightarrow\) \(7-\sqrt{2}\) là số vô tỉ

b, Ta có :

\(\sqrt{5}\)là số vô tỉ \(\Rightarrow\sqrt{5}+24\) là số vô tỉ

Bình luận (0)
 Khách vãng lai đã xóa
H24
22 tháng 10 2019 lúc 21:08

♥๖Lan_Phương_cute#✖#girl_học_đường๖ۣۜ💋:))♥。◕‿◕。

chứng minh them \(\sqrt{2}\)\(\sqrt{5}\) là số vô tỉ nữa ! Vào đây tham khảo :

https://olm.vn/hoi-dap/detail/227642288657.html

Bình luận (0)
 Khách vãng lai đã xóa
NQ
Xem chi tiết
VU
Xem chi tiết
PD
22 tháng 11 2017 lúc 22:36

Giả sử \(\sqrt{3}\)là một số hữu tỉ 

\(\Rightarrow\sqrt{3}=\frac{a}{b}\left(a;b\ne0\right);ƯCLN\left(a,b\right)=1 \)

\(\Rightarrow3=\frac{a^2}{b^2}\)

Ta có : \(a^2=3b^2\).Mà 3 là một số nguyên tố 

=> \(a^2⋮3\Leftrightarrow a⋮3\)

Vì \(a⋮3\).=> Đặt a= 3k

=>a2 = 9k2

Thay vào ta có : 

\(3=\frac{a^2}{b^2}\)

\(\Rightarrow b^2=9k^2:3\)

\(\Rightarrow b^2=3k^2\).Vì 3 là số nguyên tố 

\(\Rightarrow b^2⋮3\Leftrightarrow b⋮3\)

Vì \(a⋮3;b⋮3\)trái với UWCLN(a,b) =1

=> \(\sqrt{3}\)là một số vô tỉ

Bình luận (0)
VU
22 tháng 11 2017 lúc 22:37

thank bạn nha

Bình luận (0)
NL
Xem chi tiết
ND
20 tháng 11 2015 lúc 21:40

li ke cho minh minh giai cho

Bình luận (0)
LB
Xem chi tiết
ND
5 tháng 10 2020 lúc 21:50

Ta có: \(\sqrt{5}\) là 1 số vô tỉ

=> \(2+\sqrt{5}\) là 1 số vô tỉ

=> \(\sqrt{2+\sqrt{5}}\) là số vô tỉ

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
KK
5 tháng 10 2020 lúc 22:07

Giả sử \(\sqrt{2+\sqrt{5}}=q\left(q\inℚ\right)\)

\(\Rightarrow2+\sqrt{5}=q^2\inℚ\)

\(\Leftrightarrow\sqrt{5}=q-2\inℚ\)(Vô lý vì \(\sqrt{5}\in I\))

Vậy điều giả sử là sai hay \(\sqrt{2+\sqrt{5}}\)là số vô tỉ

Bình luận (0)
 Khách vãng lai đã xóa
JM
Xem chi tiết
TW
27 tháng 10 2016 lúc 22:35

Chứng minh cái này thì đơn giản thôi! 
Mình xin trình bày cách chứng minh mà mình tâm đắc nhất: 
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

Bình luận (0)
DL
2 tháng 7 2015 lúc 10:38

mk nghĩ thế này

a,b) Ta thấy: không có số nào mũ 2 lên được 15 và 2

=>\(\sqrt{15},\sqrt{2}\) là số vô tỉ

c) ta có: \(\sqrt{2}\) là số vô tỉ

mà Số tự nhiên - số vô tỉ luôn luôn là số vô tỉ

=>đpcm

nha bạn

Bình luận (0)
ND
10 tháng 3 2018 lúc 20:44

a, cần CM \(\sqrt{15}\)là số vô tỉ

giả sử \(\sqrt{15}\)là số hữu tỉ 

Đặt \(\sqrt{15}=\frac{a}{b}\left(a,b\in N\right)\)với b\(\ne0\)và phân số\(\frac{a}{b}\) tối giản

Ta có 15=\(\left(\frac{a}{b}^2\right)=\frac{a^2}{b^2}\)

=> a2=15b2=3.5b2

=>a2\(⋮3\)

Mà 3 nguyên tố nên a\(⋮3\)

=>a2\(⋮3^2\)=>  15b2\(⋮3^2\) => \(5b^2⋮3\)

Vì 5 và 3 nguyên tố cùng nhau nên b2\(⋮3\Rightarrow b⋮3\)(3 là số nguyên tố)

Ta có a,b cùng chia hết cho 3 nên \(\frac{a}{b}\)ko tối giản trái với đk của giả sử 

Vậy \(\sqrt{15}\)là số vô tỉ

phần b,c giống The Hell? What

Bình luận (0)