Những câu hỏi liên quan
NS
Xem chi tiết
ND
12 tháng 2 2017 lúc 8:18

1. Do \(\frac{a}{b}< 1\Leftrightarrow\)a<b \(\Leftrightarrow\)a+n<b+n

Ta có: \(\frac{a}{b}\)= 1 - \(\frac{a-b}{b}\)

          \(\frac{a+n}{b+n}\)= 1- \(\frac{a-b}{b+n}\)

Do \(\frac{a-b}{b}\)>\(\frac{a-b}{b+n}\)=> \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)

2.Tương tự

Bình luận (0)
NT
21 tháng 3 2017 lúc 16:52

ko hiểu

Bình luận (0)
H24
Xem chi tiết
PT
9 tháng 2 2016 lúc 15:12

M = a / a+b = b / b+c = c / c+a = a + b + c / (a+b) + (b+c) + (c+a) = a+b+c / (a+a) + (b+b) + (c+c)

= a+b+c / 2a + 2b + 2c = a+b+c / 2(a+b+c) = 1/2 không phải là số nguyên => M không thuộc Z. 

Bình luận (0)
HP
9 tháng 2 2016 lúc 16:41

Phan Thanh Tịnh giải sai bét rồi, "+" chứ có phải "-" đâu mà áp dung dãy tỉ số bằng nhau đc

Bình luận (0)
PT
Xem chi tiết
HB
31 tháng 1 2017 lúc 19:04

1. ta có:  (a-b) + (b-a) = a-b+b-a = 0
Vậy (a-b) và (b-a) là hai số đối nhau
2.
a, (x-y) + (m-n) = x-y +m - n = x + m - y - n = (x+m) - (y+n)
b, (x-y) - (m-n) = x-y -m +n = x+n -y -m = (x+n) -(y+m)

Bình luận (0)
TV
31 tháng 1 2017 lúc 21:44
 Gọi A = a - b và B = b - a, ta có :

A + B = a - b + b - a

A + B= a + (-b) + b + (-a)

A + B= a + (-a) + b + (-b)

A + B = 0 

Vì A + B = 0 mà hai số đối có tổng = 0 nên a - b và b - a là hai số đối nhau.

 a) (x - y) + (m - n)

= x - y + m - n

= x + (-y) + m + (-n)

= (x + m) + (-y) + (-n)

= (x + m) +[- (y + n)]

= (x + m) - (y + n)

b) (x - y) - (m - n)

= x - y - m + n

= x + (-y) + (-m) + n

= (x + n) + (-y) + (-m)

= (x + n) + [- (y + m)]

= (x + n) - (y + m)

Bình luận (0)
TV
31 tháng 1 2017 lúc 21:45
 Gọi A = a - b và B = b - a, ta có :

A + B = a - b + b - a 

A + B= a + (-b) + b + (-a) 

A + B= a + (-a) + b + (-b) 

A + B = 0 

Vì A + B = 0 mà hai số đối có tổng = 0 nên a - b và b - a là hai số đối nhau.

 a) (x - y) + (m - n)

= x - y + m - n

= x + (-y) + m + (-n)

= (x + m) + (-y) + (-n)

= (x + m) +[- (y + n)]

= (x + m) - (y + n)

b) (x - y) - (m - n)

= x - y - m + n

= x + (-y) + (-m) + n

= (x + n) + (-y) + (-m)

= (x + n) + [- (y + m)]

= (x + n) - (y + m)

Bình luận (0)
PV
Xem chi tiết
LG
5 tháng 4 2020 lúc 19:45

Có M=N

=>a-b+c+1=a+2 

 =>-b+c+1=a+2-a 

 =>-b+c+1=2 

 => c-b=1 

 Hai số nguyên liền nhau là 2 số có khoảng cách bằng 1 

 => c,b là hai số nguyên liền nhau.

Học tốt =P

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
29 tháng 3 2017 lúc 9:00

Ta có: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Ta có: a/b > 1 nên a > b suy ra am > bm, suy ra ab + am > ab + bm.

Do đó Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Hay Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 9 2018 lúc 6:15

Bình luận (0)
NL
Xem chi tiết
AH
26 tháng 12 2023 lúc 17:17

Lời giải:

Với $a,b,c>0$ ta có:

$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}{a+b+c}=1(*)$

Mặt khác:
Xét hiệu: $\frac{a}{a+b}-\frac{a+c}{a+b+c}=\frac{-bc}{(a+b)(a+b+c)}<0$ với mọi $a,b,c>0$

$\Rightarrow \frac{a}{a+b}< \frac{a+c}{a+b+c}$

Tương tự ta cũng có: $\frac{b}{b+c}< \frac{b+a}{a+b+c}; \frac{c}{c+a}< \frac{c+b}{a+b+c}$

Cộng lại ta được: $M< \frac{a+c+b+a+c+b}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2(**)$

Từ $(*); (**)\Rightarrow 1< M< 2$ nên $M$ không là số nguyên.

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 9 2019 lúc 12:11

a) Thực hiện quy đồng  a b = a ( b + m ) b ( b + m ) = a b + a m b 2 + b m ;

a + m b + m = b ( a + m ) b ( b + m ) = a b + b m b 2 + b m .  Vì a b  < 1=> a < b => ab +am < ab + bm

Từ đó thu được a b < a + m b + m

b)  437 564 < 437 + 9 564 + 9 = 446 573 .

Bình luận (0)
H24
Xem chi tiết
H24
11 tháng 3 2020 lúc 20:15

Đề có vẻ sai nhé bạn!!!

Thiếu dấu!!

hok tốt!!!

^^

Bình luận (0)
 Khách vãng lai đã xóa