Những câu hỏi liên quan
BM
Xem chi tiết
TD
Xem chi tiết
KF
2 tháng 5 2015 lúc 19:29

Đề là gì z????????????                                                                                        

Bình luận (0)
MU
2 tháng 5 2015 lúc 19:29

đây là j`? đầu đề hổng có, làm sao mà giải đc?????

Bình luận (0)
NT
28 tháng 12 2017 lúc 6:25

đề thiếu

Bình luận (0)
NA
Xem chi tiết
H24
11 tháng 5 2017 lúc 13:16

1 - 1/2 + 1/3 - 1/4 +...+ 1/99 - 1/100

= (1 + 1/3 +...+ 1/99) - (1/2 + 1/4 +...+ 1/100)

= (1+1/2+1/3+...+1/100) - 2(1/2+1/4+...+1/100)

= (1+1/2+1/3+...+1/100) - (1+1/2+...+1/50)

= 1/51+1/52+...+1/100 (đpcm)

Bình luận (1)
H24
14 tháng 10 2023 lúc 14:49

Bạn đã được chuyển khoản số tiền 1.000.000.000 VND 

Bình luận (0)
QA
Xem chi tiết
TF
Xem chi tiết
SN
5 tháng 5 2015 lúc 20:36

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\RightarrowĐPCM\)

Bình luận (0)
NK
24 tháng 3 2016 lúc 20:07

giúp tui phần b bài này

Bình luận (0)
TT
26 tháng 4 2016 lúc 14:58

Phần b làm thế nào hả bạn

Bình luận (0)
TF
Xem chi tiết
NN
14 tháng 2 2016 lúc 11:31

Dễ thì trình bày thử coi.

Bình luận (0)
DH
Xem chi tiết
HP
9 tháng 5 2016 lúc 20:31

Xét VT:

\(VT=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)

\(VT=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}=VP\)

=>đpcm

Bình luận (0)
NT
9 tháng 5 2016 lúc 20:15

Ta xét vế trái:

\(vt=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(VT=VP\)

Bình luận (0)
DH
9 tháng 5 2016 lúc 20:19

xét đi

Bình luận (0)
DH
Xem chi tiết
FS
Xem chi tiết
ST
10 tháng 5 2017 lúc 11:39

Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)(đpcm)

Bình luận (0)