Những câu hỏi liên quan
TP
Xem chi tiết
NL
23 tháng 8 2020 lúc 20:56

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
23 tháng 8 2020 lúc 21:01

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

Bình luận (0)
 Khách vãng lai đã xóa
H24
23 tháng 8 2020 lúc 21:58

\(1.A=x^2+2x+2=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1\forall x\)

hay\(\left(x+1\right)^2+1>0\forall x\)

\(2.B=x^2+2x.3+9+2=\left(x+3\right)^2+2\)

CM tương tự A

\(3.C=4x^2+4x-2=\left(2x+1\right)^2-2\)

\(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+1\right)^2-2\ge-2\forall x\)(có thể >0)

4,5 Cm tương tự

    

Bình luận (0)
 Khách vãng lai đã xóa
KQ
Xem chi tiết
NN
27 tháng 4 2016 lúc 20:24

<=>4x^2-4x+1+2

<=>(2x-1)^2+2 >0 với mọi x

Bình luận (0)
HV
Xem chi tiết
XO
3 tháng 10 2021 lúc 10:59

\(4x^2+4x+\frac{3}{2}\)

\(=4x^2+4x+1+\frac{1}{2}\)

\(=\left(2x+1\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\forall x\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
23 tháng 6 2021 lúc 20:32

a) Xét \(x^2-4x+4=\left(x-2\right)^2\ge0\)

<=> \(x^2-4x\ge-4>-5\)

b) \(2x^2+4y^2-4x-4xy+5\)

\(\left(x^2-4x+4\right)+\left(x^2-4xy+4y^2\right)+1\)

\(\left(x-2\right)^2+\left(x-2y\right)^2+1\ge1>0\)

Bình luận (0)
DR
Xem chi tiết
LD
29 tháng 8 2017 lúc 13:46

Ta có : x2 + 2x + 2

= x2 + 2x + 1 + 1

= (x + 1)2 + 1 \(\ge1\forall x\)

Vậy  x2 + 2x + 2 \(>0\forall x\)

Bình luận (0)
RG
3 tháng 9 2018 lúc 17:23

Ta có : x2 + 2x + 2

=> x2 + 2x + 1 + 1

=> ( x + 1)2 + 1  >  1\(\forall x\)

Vậy x2 + 2x + 2   > \(0\forall x\)

Bình luận (0)
DC
Xem chi tiết
HA
26 tháng 4 2017 lúc 14:10

biến đổi vế trái:

4x2 -4x +3 = (2x)2 - 2.2x +1 + 2 = (2x-1)2 +2 >0 đpcm

Bình luận (0)
QA
Xem chi tiết
UN
19 tháng 6 2017 lúc 20:07

a) x^2 + x +1 = x^2 + 1/2x+1/2x + 1/4 + 3/4= x(x+1/2)+1/2(x+1/2) + 3/4

=( x+1/2)^2 + 3/4

Do (x+1/2)^2 lớn hơn hoặc  = 0 vs mọi x => (x+1/2)^2 + 3/4 >0 =>  x^2 + x +1 > 0 với mọi x

Bình luận (0)
HD
Xem chi tiết
DD
2 tháng 10 2017 lúc 13:45

Câu a :

\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2\ge\dfrac{3}{4}\)

Vậy biểu thức trên luôn lớn hơn 0 với mọi x

Bình luận (0)
H24
2 tháng 10 2017 lúc 18:30

Làm Full cho you nhé,bạn kia sai r:

\(linh_1=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\left(đpcm\right)\)

\(linh_2=-4x^2-4x-2=-1\left(4x^2+4x+2\right)=-1\left(4x^2+4x+1+1\right)=-1\left(4x^2+4x+1\right)-1=-1\left(2x+1\right)^2-1< 0\left(đpcm\right)\)

Bình luận (2)
QN
Xem chi tiết
LN
2 tháng 6 2020 lúc 20:36

4x2-4x+3

=4x2-4x+1+2

=((2x)2-2.2.x.1+1)+2

=(2x-1)2+2

Ta có: (2x-1)2 ≥ 0 ∀x

⇒(2x-1)2+2 ≥ 2 >0 ∀x

Vậy 4x2-4x+3>0 ∀x

Bình luận (0)