cho x^2+y^2=1.chứng minh rằng biểu thức sau không phụ thuộc vào biến x,y:2(x^6+y^6)-3(x^4+y^4)
a/chứng minh rằng biểu thức sau không âm với mọi giá trị của biến
A=(-15.x^3.y^6):(-5xy^2)
b/chứng minh rằng giá trị biểu thức sau ko phụ thuộc vào giá trị của biến y(x,y khác 0)
B=2/3 x^2 y^3:(-1/3xy)+2x(y-1)(y+1)
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến :
a,(x+4)(x^2-4x+16)-x^3+5
b,y(x^2-y^2)(x^2+y^2)-y(x^4-y^4)
a)\(\left(x+4\right)\left(x^2-4x+16\right)-x^3+5=x^3+64-x^3+5=69\)
Vậy biểu thức trên ko phụ thuộc vào biến x .
b)\(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
Vậy biểu thức trên ko phụ thuộc vào biến x .
Chứng minh biểu thức không phụ thuộc vào biến
(x-y-1)^3 - (x-y+1)^3+6(x-y)^2
Bạn khai triển hằng đẳng thức (x-y-1)^3-(x-y+1)^3 với dạng A^3-B^3 rồi rút từ từ là ra thôi
chứng minh biểu thức sau không phụ thuộc vào biến x
x(3x^2-x+5)(2x^3+3x+16)(x^2-x+2)(y-5)(y+8)(y+4)(y-1)
v` đề ảo quá bạn mk tính mãi ko ra chắc chết ms ra
Cho x2 + y2 = 1. Chứng minh biểu thức sau không phụ thuộc vào biến x, y: \(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)
Ta có: \(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)=2\left[\left(x^2\right)^3+\left(y^2\right)^3\right]-3\left(x^4+y^4\right)\)
\(=2\left(x^2+y^2\right)\left(x^4+x^2y^2+y^4\right)-3x^4-3y^4\)
\(=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)
\(=-x^4-2x^2y^2-y^4\)
\(=-\left(x^4+2x^2y^2+y^4\right)\)
\(=-\left(x^2+y^2\right)^2\)
\(=-1\)
Vậy biểu thức trên không phụ thuộc vào biến.
Bài 4: Chứng minh biểu thức không phụ thuộc vào biến
a, (y-5)(y+8)-(y+4)(y-1)
2, y\(^4\)-(y\(^2\)+1)(y\(^2\)-1)
3, x(y-z)+y(z-x)+z(x-y)
4, x(y+z-yz)-y(z+x-xz)+z(y-x)
5, x(2x+1)-x\(^2\)(x+2)+x\(^3\)-x+3
6, x(3x-x+5)-(2x\(^3\)+3x-16)-x(x\(^2\)-x+2)
Bạn cần phần nào thì mình sẽ giúp đỡ . Chứ bạn nhắn nhiều bài mình không giải được á . Chứ còn dạng bài như này thì hầu hết bạn đều phải nhân bung ra rồi rút gọn đi á .
muốn rối cái não bạn nhắn một lượt mình đọc không hiểu bạn nhắn từng câu thôi
chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến m=(x^2y-3)^2-(2x-y)^3+xy^2(6-x^3) +8x^3-6x^2y-y^3
Trả lời :
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến M = ( x2y - 3 )2 - ( 2x-y)3 +xy2( 9-x3 ) + 8x3 - 6x2y - y3
Đè bài đó mọi người mk viết lại cho mn nhìn rõ
Hãy cùng giúp bạn ấy nào
m = (x2y - 3)2 - (2x - y)3 + xy2(6 - x3) + 8x3 - 6x2y - y3
m = x4y2 - 6x2y + 9 - (2x - y)3 + xy2(6 - x2) + 8x3 - 6x2y - y3
m = x4y2 - 6x2y + 9 - 8x3 + 12x2y - 6xy2 + y3 + xy2(6 - x3) + 8x3 - 6x2y - y3
m = x4y2 - 6x2y + 9 - 8x3 + 12x2y - 6xy2 + y3 + 6xy2 - x4y2 + 8x3 - 6x2y - y3
m = 9
Vậy: biểu thức không phụ thuộc vào giá trị của biến
1)tính:[4(x-y)^5+2(x-y)^3-3(x-y^3]:(y-x)^2
2)tìm x:5x(x-2)+3x-6=0
3)tìm giá trị nhỏ nhất của biểu thức A=x^2-6x+2023
4)chứng minh rằng biểu thức sau ko phụ thuộc vào biến x
5)B=(3x+5)^2+(3x+5)^2-2(3x+5)(3x-5)
6)tính C=1^2-2^2+3^2-4^2+5^2-6^2+...+2013^2-2014^2+2015^2
Bài 1.
[ 4( x - y )5 + 2( x - y )3 - 3( x - y )2 ] : ( y - x )2 < sửa một lũy thừa rồi nhé >
= [ 4( x - y )5 + 2( x - y )3 - 3( x - y )3 ] : ( x - y )2
Đặt t = x - y
bthuc ⇔ ( 4t5 + 2t3 - 3t2 ) : t2
= 4t5 : t2 + 2t3 : t2 - 3t2 : t2
= 4t3 + 2t - 3
= 4( x - y )3 + 2( x - y ) - 3
Bài 2.
5x( x - 2 ) + 3x - 6 = 0
⇔ 5x( x - 2 ) + 3( x - 2 ) = 0
⇔ ( x - 2 )( 5x + 3 ) = 0
⇔ x - 2 = 0 hoặc 5x + 3 = 0
⇔ x = 2 hoăc x = -3/5
Bài 3.
A = x2 - 6x + 2023
= ( x2 - 6x + 9 ) + 2014
= ( x - 3 )2 + 2014 ≥ 2014 ∀ x
Dấu "=" xảy ra khi x = 3
=> MinA = 2014 <=> x = 3
Bài 4.
B = ( 3x + 5 )2 + ( 3x - 5 )2 - 2( 3x + 5 )( 3x - 5 )
= [ ( 3x + 5 ) - ( 3x - 5 ) ]2
= ( 3x + 5 - 3x + 5 )2
= 102 = 100
Vậy B không phụ thuộc vào x ( đpcm )
Bài 6.
C = 12 - 22 + 32 - 42 + 52 - 62 + ... + 20132 - 20142 + 20152
= ( 20152 - 20142 ) + ... + ( 52 - 42 ) + ( 32 - 22 ) + 1
= ( 2015 - 2014 )( 2015 + 2014 ) + ... + ( 5 - 4 )( 5 + 4 ) + ( 3 - 2 )( 3 + 2 ) + 1
= 4029 + ... + 9 + 5 + 1
= \(\frac{\left(4029+1\right)\left[\left(4029-1\right)\div4+1\right]}{2}\)
= 2 031 120
Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến: a) -x^3+(x - 3)[(2x+1)^2 - 2( 3/2 x^2 + 1/2 x - 4)]
b) (x+2y)^3 -(x-3y)(x^2+3xy+9y^2 )-6y(x^2+2xy - 35/6 y^2 )
\(a,-x^3+\left(x-3\right)\left[\left(2x+1\right)^2-2\left(\dfrac{3}{2}x^2+\dfrac{1}{2}x-4\right)\right]\\ =-x^3+\left(x-3\right)\left(4x^2+4x+1-3x^2-x+8\right)\\ =-x^3+\left(x-3\right)\left(x^2+3x+9\right)\\ =-x^3+\left(x^3-27\right)=-27\)
\(b,\left(x+2y\right)^3-\left(x-3y\right)\left(x^2+3xy+9y^2\right)-6y\left(x^2+2xy-\dfrac{35}{6}y^2\right)\\ =x^3+6x^2y+12xy^2+8y^3-x^3+27y^3-6x^2y-12xy^2+35y^3\\ =0\)