phân tích đa thức thành nhân tử 4x^4 -16 -4x^2 -16x
phân tích đa thức thành nhân tử
4x^2+16x+16
Phân tích đa thức thành nhân tử:
\(x^4-4x^3+8x^2-16x+16\)
\(x^4-4x^3+8x^2-16x+16 \)
\(=x^3\left(x-2\right)-2x^2\left(x-2\right)+4x\left(x-2\right)-8\left(x-2\right)\)
\(=\left(x-2\right)\left(x^3-2x^2+4x-8\right)\)
\(=\left(x-2\right)\left[x^2\left(x-2\right)+4\left(x-2\right)\right]\)
\(=\left(x-2\right)^2\left(x^2+4\right)\)
Phân tích đa thức thành nhân tử x4-4x3+8x2-16x+16
a,x4-4x3+8x2-16x+16
=x4-4x3+4x2+4x2-16x+16
=x2.(x-2)2+4.(x-2)2
=(x-2)2(x2+4)
Phân tích đa thức thành nhân tử
a) x^4 +64 + 16x^2 - 16x^2
b)4x^2 + y^4 + 4x^2y^2 - 4x^2y^2
\(x^4+64+16x^2-16x^2\)
\(=\left(x^2+8\right)^2-16x^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
hk tốt
phân tích các đa thức sau thành nhân tử
a, 4x^4 + 4x^3 - x^2 - x
b, x^6 - x^4 - 9x^3 + 9x^2
c, x^4 - 4x^3 + 8x^2 - 16x + 16
a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)
\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)
c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)
\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)
b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)
phân tích đa thức thức thành nhân tử
x4 - 4x3 + 8x2 - 16x + 16
x^4 - 4x^3 - 8x^2 - 16x + 16
= x^4-8x^2+16-4x^3-16x
= ( x^2+4)^2 - 4x(x^2+4 )
= ( x^2 + 4 )(x^2 + 4 - 4x)
= (x^2 + 4 )( x - 2 )^2
\(x^4-4x^3+8x^2-16x+16\)
=\(x^4-4x^3+4x^2-16x+16\)
=\(x^2\left(x-2\right)^2+4\left(x-2\right)^2\)
=\(\left(x-2\right)^2\left(x^2+4\right)\)
x4 - 4x3 + 8x2 - 16x + 16 = x4 - 4x3 + 4x2+4x2 - 16x + 16= ( x4 - 4x3 + 4x2)+(4x2 - 16x + 16)
=x2(x2-4x+4) + 4( x2-4x+4) = (x2+4)(x2-4x+4)=(x2+4)(x-2)2
Phân tích đa thức thành nhân tử
A)x^3-2x^2+x-xy^2
B)4x^2+16x+16
\(b.=4\left(x^2+4x+4\right)\)
\(=4\left(x+2\right)^2\)
Học tốt
\(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
Tính phân tích đa thức thành nhân tử
\(\left(4x-5\right)\left(4x^2+4x.5-5^2\right)\left(16x+1\right)+64\)
phân tích đa thức thành nhân tử
(4x-2)^2-16x+16x
(3x-4) (3x+4)-(20x^y-15xy^2):5xy
(x-2) (3x^2+6x+12)-(120xy)^2:60xy^2
Lời giải:
$(4x-2)^2-16x+16x=(4x-2)^2$
----------------
$(3x-4)(3x+4)-(20x^2y-15xy^2):(5xy)$
$=(3x-4)(3x+4)-(4x-3y)$ không phân tích được thành nhân tử.
-----------------------------------
$(x-2)(3x^2+6x+12)-(120^2x^2y^2):(60xy^2)$
$=3(x-2)(x^2+2x+4)-240x$
$=3(x^3-2^3)-240x=3x^3-240x-24$
$=3(x^3-80x-8)$