Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TG
Xem chi tiết
NT
19 tháng 3 2021 lúc 21:28

ctr nó chia hết cho 3 và 9

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
H24
5 tháng 2 2018 lúc 18:34

Chứng minh rằng:10n + 18n - 1 chia hết cho 27.

Ta có: 10n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)
DM
Xem chi tiết
SG
9 tháng 6 2016 lúc 15:45

B = 10n + 18n - 1

B = 10n - 1 - 9n + 27n

B = 999....9 - 9n + 27n

  ( n chữ số 9)

B = 9 x ( 111...1 - n) + 27n

          ( n chữ số 1)

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 nên 111...1 - n chia hết cho 3

                                                                                                         ( n chữ số 1)

=> 9 x ( 111...1 - n) chia hết cho 27. Mà 27n chia hết cho 27 => B chia hết cho 27

Chứng tỏ B chia hết cho 27

Bình luận (0)
TT
9 tháng 6 2016 lúc 15:40

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)
TT
9 tháng 6 2016 lúc 15:40

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)
NP
Xem chi tiết
PD
17 tháng 3 2017 lúc 18:55

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)
HA
Xem chi tiết
MN
6 tháng 2 2016 lúc 17:05

ta có: 10^n+18n-1=100...0(n số 0)-1+18n=9...9(n c/s 0)+18n

ta thấy : 99..9 và 18n đều chia hết cho 3 và 9

mà 27=3.9

=>99...9+18n chia hết cho 27

hay 10^n+18n-1 chia hết cho 27

Bình luận (0)
HP
6 tháng 2 2016 lúc 17:03

\(10^n+18n-1=10^n-1-9n+27n\)

=99...9(n số 9)-9n+27=9.(11...1 -n)+27n

                                      n số 1)

vì 11..1(n số 1 ) có tổng các chữ số=n =>(11...1-n) chia hết cho 3

                                                           n số 1

=>9.(11...1-n) chia hết cho 27

        n số 1

=>đpcm

Bình luận (0)
NE
Xem chi tiết
MT
20 tháng 3 2016 lúc 14:21

\(10^n+18n-1=\left(10^n-1\right)+18n=99...999+18n\) (n chữ số 9)

= 9.(11...111 + 2n) (n chữ số 1)

Đặt x = 11...111 + 2n (n chữ số 1)

=> x = 11...111 - n + 3n

 Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các

chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 

=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => x chia hết cho 3

=> 9.x chia hết cho 27

Vậy 10^n + 18n - 1 chia hết cho 27 (đpcm).

Bình luận (0)
NS
20 tháng 3 2016 lúc 14:22

Ta có :

10n+18n-1 = (999999...9999+2)+18n-1       [ n chữ số 9 ]

=99999...999 +18n    [ n chữ số 9 ]

=9.(1111....111) +9.2n  [ n chữ số 1 ]

= 9.(1111...11 +2n ) chia hết cho 9   [ n chữ số 1 ]

= 9.(111...1-2+3n)       [ n chữ số 1 ]

Nhận xét : Số 1...1 và n là hai số chia cho 3 có cùng số dư do đó :

111...111 -n chia hết cho 3  [ n chữ số 1 ]

mà 3n chia hết cho 3

(111...111 -2+3n ) chia hết cho 3

Mà : 9.(1111...1 -2+3n ) chia hết cho 27

vậy 10n+18n-1 chia hết cho 27

( đ.p.c.m )

Bình luận (0)
NE
20 tháng 3 2016 lúc 14:23

lệch nha 43 giây Minh Hiền siêu thật

Bình luận (0)
HS
Xem chi tiết
NT
18 tháng 12 2017 lúc 21:06

b)  Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

c)  10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.

Bình luận (0)
HL
Xem chi tiết
NL
14 tháng 1 2016 lúc 17:40

10^n +18n - 1=10^n-1+18n=99..9(n chữ số 9)+18n 
=9(11...1(n chữ số 9)+2n) 
Xét 11...1(n chữ số 9)+2n=11...1- n+3n 
Dễ thấy tổng các chữ số của 11..1(n chữ số 1) là n 
=>11...1- n chia hết cho 3 
=>11...1- n+3n chia hết cho 3 
=>10^n +18n - 1 chia hết cho 27

tick nha

Bình luận (0)
DM
Xem chi tiết
ND
3 tháng 3 2016 lúc 12:45

đề bài sai rồi nếu n=2 thì sao

Bình luận (0)
TL
3 tháng 3 2016 lúc 12:49

CHTT nha bn

Bình luận (0)
NT
28 tháng 8 2021 lúc 13:24

đề bài sai rồi bạn ơi

Bình luận (0)
 Khách vãng lai đã xóa