Những câu hỏi liên quan
H24
Xem chi tiết
H24
27 tháng 4 2023 lúc 20:52

\(\dfrac{1}{11-2014}\)bỏ số 1 nha mn

ai cứu em 1 mạng đi cần gấp lắm làm rõ chút nha 

Bình luận (0)
H24
Xem chi tiết
TP
Xem chi tiết
CN
Xem chi tiết
ND
Xem chi tiết
PN
16 tháng 4 2021 lúc 21:37

Đây là toán lớp 6 nha

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
MV
1 tháng 5 2017 lúc 7:59

\(A=\dfrac{3}{1\cdot4}+\dfrac{3}{2\cdot6}+\dfrac{3}{3\cdot8}+...+\dfrac{1}{2012\cdot1342}\\ =\dfrac{3}{1\cdot4}+\dfrac{3}{2\cdot6}+\dfrac{3}{3\cdot8}+...+\dfrac{3}{2012\cdot4026}\\ =\dfrac{6}{2\cdot4}+\dfrac{6}{4\cdot6}+\dfrac{6}{6\cdot8}+...+\dfrac{6}{4024\cdot4026}\\ =3\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{4024\cdot4026}\right)\\ =3\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{4024}-\dfrac{1}{4026}\right)\\ =3\cdot\left(\dfrac{1}{2}-\dfrac{1}{4026}\right)\\ =3\cdot\dfrac{1}{2}-3\cdot\dfrac{1}{4026}\\ =1,5-\dfrac{3}{4026}< 1,5\)

Vậy \(A< 1,5\left(đpcm\right)\)

Bình luận (1)
IA
Xem chi tiết
TL
8 tháng 5 2018 lúc 19:54

\(\frac{3}{1.4}+\frac{3}{2.6}+\frac{3}{3.8}+...+\frac{1}{2012.1342}\)

\(=\frac{3}{1.4}+\frac{3}{2.6}+\frac{3}{3.8}+...+\frac{3}{2012.4026}\)

\(=\frac{6}{2.4}+\frac{6}{4.6}+\frac{6}{4.8}+...+\frac{6}{4024.4026}\)

\(=3\cdot\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{4024.4026}\right)\)

\(=3\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{4024}-\frac{1}{4026}\right)\)

\(=3\cdot\left(\frac{1}{2}-\frac{1}{4026}\right)\)

\(=3\cdot\frac{1}{2}-3\cdot\frac{1}{4026}\)

\(=1,5-\frac{3}{4026}< 1,5\)

Bình luận (0)
DD
Xem chi tiết
NH
11 tháng 5 2017 lúc 18:16

\(A=\dfrac{3}{1.4}+\dfrac{3}{2.6}+\dfrac{3}{3.8}+...............+\dfrac{1}{2012.1342}\)

\(A=\dfrac{3}{1.4}+\dfrac{3}{2.6}+\dfrac{3}{3.8}+...........................+\dfrac{3}{2012.4026}\)

\(A=\dfrac{6}{2.4}+\dfrac{6}{4.6}+\dfrac{6}{6.8}+..........................+\dfrac{6}{4024.4026}\)

\(A=3\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...................+\dfrac{2}{4024.4026}\right)\)

\(A=3\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+....................+\dfrac{1}{4024}-\dfrac{1}{4026}\right)\)

\(A=3\left(\dfrac{1}{2}-\dfrac{1}{4026}\right)\)

\(A=3.\dfrac{1}{2}-3.\dfrac{1}{4026}\)

\(A=1,5-\dfrac{3}{4026}< 1,5\)

Bình luận (0)
DH
11 tháng 5 2017 lúc 20:01

Ta có

A = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{2.6}\) + \(\dfrac{3}{3.8}\) + ... + \(\dfrac{1}{2012.1342}\)

A = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{2.6}\) + \(\dfrac{3}{3.8}\) + ... + \(\dfrac{3}{2012.4026}\)

A = \(\dfrac{6}{2.4}\) + \(\dfrac{6}{4.6}\) + \(\dfrac{6}{6.8}\) + ... + \(\dfrac{6}{4024.4026}\)

A = \(3\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{4024.4026}\right)\)

A = \(3\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{4024}-\dfrac{1}{4026}\right)\)

A = \(3\left(\dfrac{1}{2}-\dfrac{1}{4026}\right)\)

A = 3.\(\dfrac{1}{2}\) - 3.\(\dfrac{1}{4026}\)

A = 1,5 - \(3.\dfrac{1}{4026}\) < 1,5

=> A < 1,5

=> đpcm

 

Bình luận (0)
NH
13 tháng 5 2017 lúc 11:53

Cô @Bùi Thị Vân hình như có gì đó nhầm lẫn!!

Bình luận (2)
DD
Xem chi tiết
TV
11 tháng 5 2017 lúc 16:11

\(A=\)\(\frac{3}{1.4}\)\(+\)\(\frac{3}{2.6}\)\(+\)\(\frac{3}{2.8}\)\(+\).........\(+\)\(\frac{1}{2012.1342}\)\(< 1,5\)

\(=\)\(\frac{3}{1.4}\)\(+\)\(\frac{3}{2.6}\)\(+\)\(\frac{3}{3.8}\)\(+\)............\(+\)\(\frac{3}{2012.4026}\)

\(=\)\(\frac{6}{2.4}\)\(+\)\(\frac{6}{4.6}\)\(+\)\(\frac{6}{6.8}\)\(+\)..............\(+\)\(\frac{6}{4024.4026}\)

\(=\)\(3.\)\(\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...........+\frac{2}{4024.4026}\right)\)

\(=\)\(3.\)\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{4024}-\frac{1}{4026}\right)\)

\(=\)\(3.\)\(\left(\frac{1}{2}-\frac{1}{4026}\right)\)

\(=\)\(3.\)\(\frac{1}{2}\)\(-\)\(3.\)\(\frac{1}{4026}\)

\(=\)\(1,5\)\(-\)\(\frac{3}{4026}\)\(< \)\(1,5\)

Vậy \(A< 1,5\)

Bình luận (0)