Những câu hỏi liên quan
TT
Xem chi tiết
TA
Xem chi tiết
TS
Xem chi tiết
TS
28 tháng 1 2019 lúc 18:20

Các bạn tính C giúp mình nhanh nhanh nhé

Bình luận (0)
NC
28 tháng 1 2019 lúc 18:44

với x+y=3 thì:

C=\(\frac{3x+5y}{2y+9}+\frac{2x-3y}{5x-9}\)

=\(\frac{3x+3y+2y}{2y+9}+\frac{5x-3x-3y}{5x-9}\)

=\(\frac{3\left(x+y\right)+2y}{2y+9}+\frac{5x-3\left(x+y\right)}{5x-9}\)

=\(\frac{3.3+2y}{2y+9}+\frac{5x-3.3}{2x-9}\)

= 1+1

=2

Bình luận (0)
HN
28 tháng 1 2019 lúc 19:50

\(C=\frac{3x+5y}{2y+9}+\frac{2x-3y}{5x-9}\)

\(\Rightarrow C=\frac{3x+3y+2y}{2y+9}+\frac{5x-3x-3y}{5x-9}\)

\(\Rightarrow C=\frac{3\left(x+y\right)+2y}{2y+9}+\frac{5x-3\left(x+y\right)}{5x-9}\)

\(\Rightarrow C=\frac{3.3+2y}{2y+9}+\frac{5x-3.3}{5x-9}\)

\(\Rightarrow C=\frac{9+2y}{2y+9}+\frac{5x-9}{5x-9}\)

\(\Rightarrow C=1+1=2\)

Vậy C = 2

Bình luận (0)
PD
Xem chi tiết
TT
Xem chi tiết
NN
11 tháng 7 2019 lúc 8:09

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

Bình luận (0)
HS
11 tháng 7 2019 lúc 16:41

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

Bình luận (0)
HS
11 tháng 7 2019 lúc 16:43

d, \(2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

Vậy : \(\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=75\\y=50\\z=30\end{cases}}\)

Bình luận (0)
PT
Xem chi tiết
DT
8 tháng 4 2020 lúc 11:21

Thay 9 = 3(x+y).

E=\(\frac{3x+5y}{2y+3x+3y}\)+\(\frac{2x-3y}{5x-3x-3y}\)

E=\(\frac{3x+5y}{3x+5y}\)+\(\frac{2x-3y}{2x-3y}\)

E=1+1=2

Bình luận (0)
PL
Xem chi tiết
DP
24 tháng 7 2017 lúc 19:54

a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)

 \(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được : 

\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)

\(\Leftrightarrow50+10y-12y-24y-152=80\)

\(\Leftrightarrow-26y=182\Rightarrow y=-7\)

Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)

Vậy .... 

Bình luận (0)
PP
24 tháng 7 2017 lúc 19:35

mk ko bt 

bạn cute quá ; 

tặng bạn , tk mk nhé ; 

Hình ảnh có liên quan

Bình luận (0)
PL
24 tháng 7 2017 lúc 19:37

@Phạm thu phương sao lại cute ạ ><

Bình luận (0)
Xem chi tiết
NT
25 tháng 7 2021 lúc 22:13

a, mình nghĩ đề là cm đẳng thức nhé 

\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)

Vậy ta có đpcm 

b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)

\(=-5y-9+xy=VP\)

Vậy ta có đpcm 

c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)

Vậy ta có đpcm 

Bình luận (0)
 Khách vãng lai đã xóa
HG
Xem chi tiết