Những câu hỏi liên quan
IA
Xem chi tiết
PH
17 tháng 8 2019 lúc 22:47

cậu có saii đề không ạ ? Mình nghĩ là bình phương chứ?

Bình luận (0)
IA
17 tháng 8 2019 lúc 23:15

thêm bình phương nữa bạn

Bình luận (0)
TH
Xem chi tiết
LM
8 tháng 10 2019 lúc 21:26

a,(2n+4).2=4(n+2) chia hwtc ho 8

Bình luận (0)
NA
8 tháng 10 2019 lúc 21:28

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

Bình luận (0)
H24
8 tháng 10 2019 lúc 21:28

a/\(\left(n+3\right)^2-\left(n-1\right)^2.\)

\(=\left(n^2+6n+9\right)-\left(n^2-2n+1\right)\)

\(=n^2+6n+9-n^2+2n-1\)

\(=8n+8\)

\(=8\left(n+1\right)\)

có \(8\left(n+1\right)⋮8\)

\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)

b/ \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left(n^2+12n+36\right)-\left(n^2-12n+36\right)\)

\(=n^2+12n+36-n^2+12n-36\)

\(=24n\)

có \(24n⋮24\)

\(\Rightarrow\left(n+6\right)^2-\left(n-6\right)^2⋮24\)

Bình luận (0)
CA
Xem chi tiết
H24
3 tháng 1 2019 lúc 20:42

C/M chia hết cho 3 và 8

Bình luận (0)
HN
3 tháng 1 2019 lúc 20:49

\(\left(n^2+3n+1\right)-1=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Bn chứng minh biểu thức trên chia hết cho 3 và 2 nhé!

Sau đó lí luận là (3,2) = 1 và 3.23=24 nên biểu thức chia hết cho 24  

P/s:  ( Nếu có sai sót mong thông cảm =))

Bình luận (0)
TM
Xem chi tiết
SH
9 tháng 11 2017 lúc 19:59

khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)H cx tương tự

Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7

.1Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91

Xong!!!

Bình luận (1)
SH
9 tháng 11 2017 lúc 20:11

cái này dễ hiểu hơn

5^n (5^n + 1) – 6^n (3^n + 2^n) chia hết cho 91
A = 5^n (5^n + 1) – 6^n (3^n + 2^n) = + 5^n – 18^n – 12^n
= 25^n – 18^n – (12^n – 5^n)
Ta có: 25 – 18 chia hết cho 7
Nên 25 đồng dư với 18 khi chia cho 7
Hay 25^n đồng dư với 18^n khi chia cho 7
Suy ra 25^n – 18^n chia hết cho 7
Chứng minh tương tự thì 12^n – 5^n chia hết cho 7
Nên A chia hết cho 7
Mặt khác A = 25^n – 12^n – (18^n – 5^n)
với 25^n – 12^n và 18^n – 5^n đều chia hết cho 13
Suy ra A chia hết cho 13
Vậy A chia hết cho 7.13 = 91

Bình luận (0)
NT
Xem chi tiết
VQ
6 tháng 11 2023 lúc 22:17

Llklkksd

Bình luận (0)
NT
Xem chi tiết
KM
Xem chi tiết
LH
Xem chi tiết
NQ
29 tháng 3 2018 lúc 22:13

Bạn ơi đề thiếu cái gì đó rùi nha !

Vì nếu ta thay n lẻ thì :

n^2 cũng lẻ => n^2-2 lẻ => (n^2-2)^2 lẻ

=> [n.(n^2-2)^2] lẻ nên ko thể chia hết cho 10 là số chẵn

Bình luận (0)
TT
Xem chi tiết
AH
30 tháng 1 2017 lúc 17:48

Đặt \(A=n(n+1)(2n+1)\)

Nếu $n$ chẵn thì $A$ chẵn \(\Rightarrow A\vdots 2\)

Nếu $n$ lẻ thì $n+1$ chẵn, do đó $A$ chẵn \(\Rightarrow A\vdots 2\)

Vậy $A$ luôn chia hết cho $2$ $(I)$

Nếu $n$ chia hết cho $3$ thì $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $1$ thì $2n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Vậy $A$ luôn chia hết cho $3$ $(II)$

Từ $(I),(II)$ kết hợp với $(2,3)=1$ suy ra \(A\vdots (2.3=6)\) (đpcm)

Bình luận (0)
TT
30 tháng 1 2017 lúc 17:40

Nguyễn Huy TúAkai Haruma

Bình luận (0)
TD
30 tháng 1 2017 lúc 18:35

6 nha

Bình luận (0)