Những câu hỏi liên quan
PH
Xem chi tiết
TT
Xem chi tiết
HB
Xem chi tiết
H24
Xem chi tiết
TD
16 tháng 11 2017 lúc 18:15

Ta có :

\(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)

\(B=\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)+1\)

\(B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}\)

\(B=2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)

\(\Rightarrow\frac{B}{A}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}=2017\)

Vậy \(\frac{B}{A}\)là số nguyên

Bình luận (0)
DT
Xem chi tiết
LT
Xem chi tiết
2N
Xem chi tiết
LV
29 tháng 3 2016 lúc 16:06

a)\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}<1\)

\(\Rightarrow2M=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}<1\)

\(2M-M=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\right)<1\)

\(\Rightarrow M=1-\frac{1}{2016^2}\)<1

=>(DPCM)

CÂU b và c làm tương tự

Bình luận (0)
H24
29 tháng 3 2016 lúc 16:23

chtt 

nhé bn

Bình luận (0)
LV
Xem chi tiết
ME
Xem chi tiết
SG
2 tháng 7 2016 lúc 19:16

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\right)\)

\(A=1-\frac{1}{2^{2017}}< 1\)

\(=>đpcm\)

Ủng hộ mk nha ^_-

Bình luận (0)