Chứng minh : Với mọi n lẻ ta luôn có : \(n^3+3n^2-n-3\) chia hết cho 48 .
Giúp mình với: chứng minh rằng với mọi số nguyên tố n, ta có:
a)n^5-5n^3+4n chia hết cho 120
b) n^3-3n^2-n+3 chia hết cho 48 với mọi n lẻ?
\(a,n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)
Giúp mình với: chứng minh rằng với mọi số nguyên tố n, ta có:
a)n^5-5n^3+4n chia hết cho 120
b) n^3-3n^2-n+3 chia hết cho 48 với mọi n lẻ?
chứng minh rằng: n^3-3n^2-n+3 chia hết cho 48 với mọi số lẻ n
n^2(n-3)-(n-3)=(n-3)(n^2-1)=(n-3)(n-1)(n+1)
Có: (n-1)(n+1) là tích 2 số chắn liên tiếp=> (n-1)(n+1) chia hết cho 8
n lẻ=> n-3 chẵn=> n-3 chia hết cho 2
=> (n-3)(n-1)(n+1) chia hết cho 2*8=16(1)
Mặt khác n^3-3n^2-n+3 = n(n^2-1)-3(n^2-1)=n(n-1)(n+1)-3(n^2-1)
thấy n(n-1)(n+1) là tích 3 stn liên tiếp => n(n-1)(n+1) chia hết cho 3
lại có: 3(n^2-1) chia hết cho 3
=> n^3-3n^2-n+3 chia hết cho 3(2)
(1)(2)=>n^3-3n^2-n+3 chia hết cho 48
n^3-3n^2-n+3=(n^3-n)-3(n^2-1)=n(n^2-1)-3(n^2-1)=(n-3)(n-1)(n+1)
n lẻ nên có dạng n=2k+1 (k \(\in N\)) thay vào trên ta được
(2k-2)2k(2k+2)=8(k-1)k(k+1) chia hết cho 48 nếu (k-10k(k+10 chia hết cho 6
Thật vậy
(k-1)k(K+1) là 3 số liên tiếp nên luôn tồn tại một số chia hết cho 3
(k-1)k(k+1) cũng luôn tồn tại ít nhất một số chia hết cho 2
vậy (k-1)k(k+1) chia hết cho 6 (chứng minh xong)
Chứng minh rằng: n3-3n2-n+3 chia hết cho 48 với mọi số lẻ n
A = n3-3n2-n+3 = n2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
Vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A \(⋮\) 16(1)
mặt khác:
A = n3-3n2-n+3 = n3 - n - 3(n2 - 1) = n(n+1)(n-1) - 3(n2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) 3 => A \(⋮\) 3
n = 3k + 1 => (n -1) \(⋮\) 3 => A \(⋮\) 3
n = 3k + 2 => (n+1) = 3k + 3 \(⋮\) 3
=> A \(⋮\) 3 (2)
Từ (1) và (2) => A \(⋮\) 3.16 = 48 (3; 16 là 2 số nguyên tố cùng nhau).
Ta có:
\(n^3-3n^2-n+3\)
\(=\left(n+1\right)\left(n-1\right)\left(n-3\right)\)
Thay \(n=2k+1\), ta có:
\(\left(2k+1+1\right)\left(2k\right)\left(2k-2\right)\)
\(=2k.2.2.k.\left(k+1\right)\left(k-1\right)\)
\(=8\left(k-1\right)k.\left(k+1\right)\)
Ta thấy k, k-1 ; k+1 là 3 số tự nhiên liên tiếp, mà 3 số tự nhiên liên tiếp thì chia hết cho 6.
=> \(n^3-3n^2-2+3⋮48\) với mọi số n lẻ.
Vậy ...
Chứng minh rằng n3 - 3n2-n+3 chia hết cho 48 với mọi số nguyên lẻ n
)chứng minh rằng n^3-3n^2-n+3 chia hết cho 48 với mọi n là số tự nhiên lẻ.
A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).
Chứng minh rằng n3 - 3n2-n+3 chia hết cho 48 với mọi số nguyên lẻ n
Tham khảo cách làm tương tự: Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
Chứng minh:
a) n^5 - 5n^3 + 4n chia hết cho 120 ( với mọi n thuộc Z )
b) n^3 - 3n^2 - n + 3 chia hết cho 48 ( với n lẻ )
Chứng minh với mọi n thuộc Z thì :
n^5 - n chia hết cho 5
n^7 - n chia hết cho 7
n^3 - 3n^2 - n + 3 chia hết cho 48 ( n lẻ )
\(A=N^5-N=N\left(N^4-1\right)=N\left(N^2-1\right)\left(N^2+1\right)=N\left(N-1\right)\left(N+1\right)\left(N^2+1\right)\)
NẾU N:5 DƯ 1\(\Rightarrow N=5K+1\)
\(\Rightarrow A=N.\left(5K+1-1\right)\left(N+1\right)\left(N^2+1\right)=N.5K.\left(N+1\right)\left(N^2+1\right)\)
...
Đến đây thì bí rồi nhé
a) n^5 - 5n^3 + 4n chia hết cho 120 với mọi n nguyên
b) n^3 - 3n^2 - n + 3 chia hết cho 48 với mọi n lẻ
c) n^3 + 3n^2 - n - 3 chia hết cho 48 với mọi n lẻ
Help me ! Thanks in advance ^_^
\(a,n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\left(n^2-1\right)\left(n^2-4\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)(chia hết cho 1;2;3;4;5)\(\Rightarrowđpcm\)
b,
A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).
Câu hỏi của CoRoI - Toán lớp 8 - Học toán với OnlineMath