Những câu hỏi liên quan
VN
Xem chi tiết
EC
7 tháng 6 2019 lúc 10:24

Giải:

Ta có: x = 1

=> \(\frac{7}{3a-1}=1\)

=> \(3a-1=7\)

=> 3a = 8

=> a = 8/3

b) Ta có: x = 7

=> \(\frac{7}{3a-1}=7\)

=> 3a - 1 = 7 : 7

=> 3a - 1 = 1

=> 3a = 2

=> a = 2/3

Bình luận (0)
H24
7 tháng 6 2019 lúc 10:25

#)Giải :

a) \(x=\frac{7}{3a-1}\)

Theo đề : \(-1=\frac{7}{3a-1}\)

Từ đây giải ra a = - 2 

b) \(x=\frac{7}{3a-1}\)

theo đề : \(7=\frac{7}{3a-1}\)

Từ đây ra a = \(\frac{2}{3}\)

Bình luận (0)
H24
7 tháng 6 2019 lúc 10:26

\(=>A=\frac{2}{3}\)

~Hok tốt~

Bình luận (0)
NQ
Xem chi tiết
DN
Xem chi tiết
PN
13 tháng 5 2017 lúc 9:40

x = -1

\(\Rightarrow-1=\dfrac{7}{3}.a-1\\ \Rightarrow\dfrac{7}{3}.a-1=-1\\ \dfrac{7}{3}.a=-1+1=0\\ \Rightarrow a=0\)

x = 7

\(\Rightarrow7=\dfrac{7}{3}.a-1\\ \Rightarrow\dfrac{7}{3}.a-1=7\\ \dfrac{7}{3}.a=7+1=8\\ \Rightarrow a=8:\dfrac{7}{3}=\dfrac{8}{1}.\dfrac{3}{7}=\dfrac{24}{7}\)

Bình luận (0)
H24
13 tháng 5 2017 lúc 9:40

a) \(x=\dfrac{7}{3a-1}\)

theo đề: \(-1=\dfrac{7}{3a-1}\)

Từ đây giải ra a = -2.

b) \(x=\dfrac{7}{3a-1}\)

theo đề: \(7=\dfrac{7}{3a-1}\)

Từ đây giải ra a = \(\dfrac{2}{3}\)

Bình luận (0)
LA
13 tháng 5 2017 lúc 9:45

Giải

a) ta có ; x = 7/ 3a-1

tại x = -1 ta có ;

x= 7/ 3a-1 = -1

7/ 3a =0

3a = 0 suy ra a= 0

vậy tại a = 0 thì giá trị của x =-1

b) tại x = 7 ta có ;

x= 7/ 3a-1 = 7

7/ 3a=8 suy ra a= 8/ (7/ 3)=24/7

vậy tại a = 24/7 thì giá trị của x = 7

Bình luận (2)
H24
Xem chi tiết
LH
Xem chi tiết
HT
Xem chi tiết
HD
28 tháng 4 2020 lúc 16:01

hello

Bình luận (0)
 Khách vãng lai đã xóa
LQ
6 tháng 5 2020 lúc 8:17

a.Ta có :\(x+2>7\)

Mà \(x+2=7\)

\(x=7-2=5\)

Vậy để x + 2 > 7, x phải > 5

b.Ta có : \(x-1< 3\)

Mà \(x-1=3\)

\(x=3+1=4\)

Vậy để \(x-1< 3\), x < 4

c.Với x = -1

ta sẽ có:\(-1.63-2.-1+7=-54\)

\(\Rightarrow-54< -10\)

Vậy để x63 - 2x + 7 > -10, x phải là số nguyên dương

Mình còn hơi thiéu kinh nghiệm trong việc tìm x nên nếu đúng hay sai bạn bảo mình nhé

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
DV
7 tháng 9 2015 lúc 21:18

\(\frac{x+\frac{1}{2}}{x-\frac{7}{3}}>0\)

<=> x + \(\frac{1}{2}\) và x - \(\frac{7}{3}\) cùng dấu

<=> x + \(\frac{1}{2}\) < 0 hoặc x - \(\frac{7}{3}\) > 0

<=> x < \(-\frac{1}{2}\) hoặc x > \(\frac{7}{3}\)

Bình luận (0)