Tìm x biết
a) (x-1).(x+2).(x+3).(x+6)-28=0
b) (x^2+4x+3).(x^2+6x+8)=0
Tìm x biết
a) (x-1).(x+2).(x+3).(x+6)-28=0
b) (x^2+4x+3).(x^2+6x+8)=0
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
tìm x biết
a, x(2x-7)-4x+14=0
b, x(x-1)+2x-2=0
c, 2x^3+3x^2+2x+3=0
d, x^3+6x^2+11x+6=0
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3tìm x biết
a, x(2x-7)-4x+14=0
b, x(x-1)+2x-2=0
c, 2x^3+3x^2+2x+3=0
d, x^3+6x^2+11x+6=0
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
tau cung bui ma chu mi giup tao roi cam on nhe
Tìm x, biết:
a.(x-3).(x+3)=(x-5)^2
b.(2x+1)^2-4x.(x-1)=17
c.(3x-2).(3x+2)-9.(x-1).x=0
d.(3-x)^3-(x+3)^3=36x^2-54x
e.x^3-6x^2+12x-8=27
Một. Khai triển vế trái của phương trình:
(x-3)(x+3) = x(x+3) - 3(x+3) = x^2 + 3x - 3x - 9 = x^2 - 9
Khai triển vế phải của phương trình:
(x-5)^2 = (x-5)(x-5) = x(x-5) - 5(x-5) = x^2 - 5x - 5x + 25 = x^2 - 10x + 25
Đặt hai cạnh bằng nhau:
x^2 - 9 = x^2 - 10x + 25
Trừ x^2 từ cả hai phía:
-9 = -10x + 25
Trừ 25 từ cả hai vế:
-34 = -10 lần
Chia cả hai vế cho -10:
x = 3,4
b. Khai triển vế trái của phương trình:
(2x+1)^2 - 4x(x-1) = (2x+1)(2x+1) - 4x^2 + 4x = 4x^2 + 2x + 2x + 1 - 4x^2 + 4x = 8x + 1
Đặt vế trái bằng 17:
8x + 1 = 17
Trừ 1 cho cả hai vế:
8x = 16
Chia cả hai vế cho 8:
x = 2
c. Khai triển vế trái của phương trình:
(3x-2)(3x+2) - 9(x-1)x = (9x^2 - 4) - 9x^2 + 9x - 9x = -4 + 9x
Đặt vế trái bằng 0:
-4 + 9x = 0
Thêm 4 vào cả hai bên:
9x = 4
Chia cả hai vế cho 9:
x = 4/9
d. Khai triển vế trái của phương trình:
(3-x)^3 - (x+3)^3 = (27 - 9x + x^2) - (x^3 + 9x^2 + 27) = 27 - 9x + x^2 - x^3 - 9x^2 - 27 = -x^3 - 8x^2 - 9x
Đặt vế trái bằng 36x^2 - 54x:
-x^3 - 8x^2 - 9x = 36x^2 - 54x
Cộng x^3 + 8x^2 + 9x vào cả hai vế:
0 = 37x^2 - 63x
Chia cả hai vế cho x:
0 = 37x - 63
Thêm 63 vào cả hai bên:
63 = 37 lần
Chia cả hai vế cho 37:
x = 63/37
b2 tìm x
a)x^2-4x-5=0
b)5x^2-9x-2=0
c)(x^2+1)-5(x^2+1)+6=0
d)(x^2+6x)-2(x+3)^2-17=0
Lời giải:
a. $x^2-4x-5=0$
$\Leftrightarrow (x+1)(x-5)=0$
$\Leftrightarrow x+1=0$ hoặc $x-5=0$
$\Leftrightarrow x=-1$ hoặc $x=5$
b.
$5x^2-9x-2=0$
$\Leftrightarrow (x-2)(5x+1)=0$
$\Leftrightarrow x-2=0$ hoặc $5x+1=0$
$\Leftrightarrow x=2$ hoặc $x=\frac{-1}{5}$
c.
$(x^2+1)-5(x^2+1)+6=0$
$\Leftrightarrow a^2-5a+6=0$ (đặt $x^2+1=a$)
$\Leftrightarrow (a-2)(a-3)=0$
$\Leftrightarrow a-2=0$ hoặc $a-3=0$
$\Leftrightarrow x^2-1=0$ hoặc $x^2-2=0$
$\Leftrightarrow (x-1)(x+1)=0$ hoặc $(x-\sqrt{2})(x+\sqrt{2})=0$
$\Leftrightarrow x\in\left\{\pm 1; \pm \sqrt{2}\right\}$
d.
$(x^2+6x)-2(x+3)^2-17=0$
$\Leftrightarrow (x^2+6x+9)-2(x+3)^2-26=0$
$\Leftrightarrow (x+3)^2-2(x+3)^2-26=0$
$\Leftrightarrow -(x+3)^2-26=0$
$\Leftrightarrow (x+3)^2=-26<0$ (vô lý)
Do đó không tồn tại $x$ thỏa mãn.
a)(x^2 -1)^2-x(x^2-1)-2x^2=0
b)(x^2 + 6x+8)(x^2+8x+15)-24=0
c)(x^2+ x- 2)*(x^2+ 9x+18)-28=0
d)(x^2 +4x+8)^2+3x(x^2+4x+8)+2x^2=0
I) THỰC HIỆN PHÉP TÍNH
a) 2x(x^2-4y)
b)3x^2(x+3y)
c) -1/2x^2(x-3)
d) (x+6)(2x-7)+x
e) (x-5)(2x+3)+x
II phân tích đa thức thành nhân tử
a) 6x^2+3xy
b) 8x^2-10xy
c) 3x(x-1)-y(1-x)
d) x^2-2xy+y^2-64
e) 2x^2+3x-5
f) 16x-5x^2-3
g) x^2-5x-6
IIITÌM X BIẾT
a)2x+1=0
b) -3x-5=0
c) -6x+7=0
d)(x+6)(2x+1)=0
e)2x^2+7x+3=0
f) (2x-3)(2x+1)=0
g) 2x(x-5)-x(3+2x)=26
h) 5x(x-1)=x-1
IV TÌM GTNN,GTLN.
a) tìm giá trị nhỏ nhất
x^2-6x+10
2x^2-6x
b) tìm giá trị lớn nhất
4x-x^2-5
4x-x^2+3
bn ko bik lm hay sao, hay là bn chỉ đăng đề lên thôi
sao nhìu... z p , đăq từq câu 1 thôy nha p
I) THỰC HIỆN PHÉP TÍNH
a) 2x(x^2-4y)
b)3x^2(x+3y)
c) -1/2x^2(x-3)
d) (x+6)(2x-7)+x
e) (x-5)(2x+3)+x
II phân tích đa thức thành nhân tử
a) 6x^2+3xy
b) 8x^2-10xy
c) 3x(x-1)-y(1-x)
d) x^2-2xy+y^2-64
e) 2x^2+3x-5
f) 16x-5x^2-3
g) x^2-5x-6
IIITÌM X BIẾT
a)2x+1=0
b) -3x-5=0
c) -6x+7=0
d)(x+6)(2x+1)=0
e)2x^2+7x+3=0
f) (2x-3)(2x+1)=0
g) 2x(x-5)-x(3+2x)=26
h) 5x(x-1)=x-1
IV TÌM GTNN,GTLN.
a) tìm giá trị nhỏ nhất
x^2-6x+10
2x^2-6x
b) tìm giá trị lớn nhất
4x-x^2-5
4x-x^2+3
Ôi trời sao lắm thế ít thôi bạn nên tách ra mà bạn cần gấp lắm à
đúng rồi pn. giúp mik đc bài nào cũng đc