Những câu hỏi liên quan
NN
Xem chi tiết
DA
6 tháng 2 2016 lúc 9:40

đặt A=5a+3b                                                                          B=13a+8b

vì a,b thuộc N và 5a+3b chia hết 2012

=>:13A= 13(5a+3b)=65a+39b  chia hết cho 2012                                                                       (1)                                                        và 13a+8b chia hết 2012 => 5B=5(13a+8b)=65a+40b     chia hết cho 2012                                                                          (2)

Từ (1) và (2) => [65a+40b - (65a + 39b)] chia hết 2012

                 <=> 65a+40b - 65a - 39b chia hết cho 2012

                <=> b chia hết cho 12
          => 3b chia hết cho 2012 mà 5a +3b chia hết cho 2012

          => 5a chia hết cho 2012 mà UCLN(5,2012)=1

               => a chia hết cho 2012

Vậy a,b thuộc N  5a+3b và 13a+8b chia hết cho 2012 thì a và b cũng chia hết cho 2012

Bình luận (0)
TL
6 tháng 2 2016 lúc 9:40

chia hết vì trong 1 tổng có 1 thừa số chia ko chia hết cho 2012 thì tổng sẽ ko chia hết cho 2012, mà trog 1 tổng có tất cả thừa số cùng chia hết cho 2012 thì tổng sẽ chia hết cho 2012

tích nha!!!

Bình luận (0)
NN
Xem chi tiết
DH
Xem chi tiết
DH
26 tháng 2 2016 lúc 18:12

Các bạn xem mình làm có đúng ko ??

Ta có: 5a + 3b chia hết cho 2012 => 13(5a+3b) chia hết cho 2012

=> 65 a + 39b chia hết cho 2012 (1)

Lại có: 13a + 8b chia hết cho 2012 => 5(13a + 8b) chia hết cho 2012

=> 65 a + 40b chia hết cho 2012 (2)

Từ (1)(2) => (65a + 40b) – (65a+39b) chia hết cho 2012

=> b chia hết cho 2012

Tương tự => a chia hết cho 2012

Vậy a, b cũng chia hết cho 2012

Bình luận (0)
NV
26 tháng 2 2016 lúc 18:15

bạn làm đúng rồi , Hùng ạ ; còn phần tiếp theo bạn cũng làm tương tự sẽ ra kết quả

ủng hộ nha

Bình luận (0)
EM
26 tháng 2 2016 lúc 18:17

ta có : 5(13a + 8b) - 13(5a + 3b) chia hết cho 2012

=> (65a + 40b) - (65a + 39b) chia hết cho 2012

=> b chia hết cho 2012

mà (13a + 8b) - (5a + 3b) chia hết cho 2012

=> 8a + 5b chia hết cho 2012

mà b chia hết cho 2012

=> a cũng chia hết cho 2012

                                                     ĐCPCM

Bình luận (0)
VH
Xem chi tiết
HL
Xem chi tiết
LD
9 tháng 2 2021 lúc 7:49

M = 2012 + 20122 + ... + 20122010

= ( 2012 + 20122 ) + ... + ( 20122009 + 20122010 )

= 2012( 1 + 2012 ) + ... + 20122009( 1 + 2012 )

= 2012.2013 + ... + 20122009.2013

= 2013( 2012 + ... + 20122009 ) chia hết cho 2013

hay M chia hết cho 2013 ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
H24
Xem chi tiết
L2
Xem chi tiết
PG
6 tháng 2 2020 lúc 21:39

TH1: n = 2k (k thuộc N):

Ta có: (n + 20122013)(n + 20132012) = (2k + 20122013)(2k + 20132012).

Vì: (2k + 20122013) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2    (1)

TH2: n = 2k + 1 (k thuộc N):

Ta có: (n + 20122013)(n + 20132012) = (2k + 1 + 20122013)(2k  + 1 + 20132012).

Vì: (2k + 1 + 20132012) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2    (2)

Từ (1) và (2) suy ra: (n + 20122013)(n + 20132012) ⋮ 2.

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
HV
Xem chi tiết
NH
7 tháng 10 2024 lúc 7:27

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

Bình luận (0)
NH
7 tháng 10 2024 lúc 8:51

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

Bình luận (0)
NH
7 tháng 10 2024 lúc 9:06

                           Bài 3: 

Đây là toán nâng cao chuyên đề tính chất chia hết của một tích, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

                               Giải:

A = (n + 20132012).( n + 20122013)

TH1: Nếu n  là số chẵn ta có:

    2012 là số chẵn nên 20122013 là số chẵn suy ra n + 201213 là số chẵn. Mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số chẵn (1)

TH2: Nếu n là số lẻ ta có:

   2013 là số lẻ nên 20132012 là số lẻ khi đó ta có 

  n + 20132012 là số chẵn vì tổng của hai số lẻ là một số chẵn mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số lẻ (2)

Kết hợp (1) và (2) ta có:

A = (n + 20132012).(n + 20122013) ⋮ 2 ∀ n \(\in\) N

     

 

 

Bình luận (0)