tìm số tự nhiên n để các biểu thức sau là số chính phương: \(n^2-n+2\)
Tìm số tự nhiên n để biểu thức sau là số chính phương
n^2+2n+18
Tìm số tự nhiên n để các biểu thức sau là số chính phương:
a, n\(^3\)- n +3
b, n\(^4\) - n +2
b, nếu n=0 thì n4 - n +2=2(loại)
nếu n=1 thì n4 - n +2=2(loại)
nếu n=2 thì n4 - n +2=16(nhận)
nếu n>=3 thì n4-n+2>(n2)2-2n+1=(n2-1)2
n4-n+2<(n2)2 (vì n>=3 nên -n+2<0)
suy ra (n2-1)2 <n4-n+2<(n2)2 suy ra n>=3 ko là số cp
vậy n=2
Tìm tất cả các số tự nhiên n sao cho biểu thức sau đây là số chính phương: S= \(2^n+1\)
Để S là số chính phương
\(\Rightarrow2^n+1=k^2\Rightarrow2^n=k^2-1=\left(k-1\right).\left(k+1\right)\)
\(\text{Vì }2^n\text{ chẵn }\Rightarrow\left(k-1\right).\left(k+1\right)\text{ chẵn }\)=> k-1 và k+1 là 2 số chẵn liên tiếp.
Dễ thấy 2n =2.2..2 ( n chữ số 2)
Mà k-1 và k+1 là tích của 2 số chẵn liên tiếp (hơn kém nhau 2 đơn vị) => k-1=2 và k+1=4 <=> k=3
=> 2n+1=32=9 => 2n=8 <=> n=3
Vậy n=3
tìm số nguyên dương n để các biểu thức sau là số chính phương n^2-n+2
Để \(n^2-n+2\) là số chính phương \(\Leftrightarrow n^2-n+2=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\left(4n^2-4n+1\right)+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2a-1\right)=-7\)
=> 2n - 2a - 1 và 2n + 2a - 1 là ước của - 7
Đến đây liệt kê ước của - 7 rồi xét các TH !!!
Tìm số tự nhiên n để biểu thức là số chính phương:
n4 + n3 + n2
tìm số tự nhiên n sao cho biểu thức sau là số chính phương:
a) n^3-n+2
b) n^4-n+2
a) Đặt n3 - n + 2 = k2
<=> n(n2 -1) +2 = k2
<=> (n-1)n(n+1) +2 = k2
Mà (n-1)n(n+1) là 3 STN liên tiếp => (n-1)n(n+1) chia hết cho 3
Mà không có số chính phương nào chia 3 dư 2
=> (n-1)n(n+1) +2 = k2 (vô lý)
Vậy n= {O}
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Tìm số tự nhiên n để biểu thức là số chính phương:
n4 + 2n3 + 2n2 + 2n + 7
3. Tìm các số tự nhiên n để 2^n +57 là số chính phương