Giải phương trình: |x-2002|2002 + |x-2003|2003 =1.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải phương trình nguyện nguyên: x^15+y^15+z^15=19^2002+7^2003+9^2003
giải phương trình sau:
(2-x) /2001 -1 =(1 -x) /2002 - x/2003
\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
\(\Leftrightarrow\frac{2-x}{2001}+1=\frac{1-x}{2002}+1+\frac{-x}{2003}+1\)
\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)
\(\Leftrightarrow\frac{2003-x}{2001}-\frac{2003-x}{2002}-\frac{2003-x}{2003}=0\)
\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow2003-x=0\left(\text{ vì }\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\right)\)
<=>x=2003
Vậy S={2003}
Giải phương trình:
\(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
https://olm.vn/hoi-dap/detail/212443421285.html
Giải phương trình : \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\).
\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
\(\Leftrightarrow\frac{2-x}{2001}+1=\left(\frac{1-x}{2001}+1\right)+\left(\frac{-x}{2003}+1\right)\)
\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)
\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow\left(2003-x\right)=0\) (vì \(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\))
\(\Leftrightarrow x=2003\).
Vậy tập nghiệm của phương trình là \(S=\left\{2003\right\}\).
Giải phương trình: \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
Giải phương trình sau:
a) x+1/2004 + x+2/2003 = x+3/2002 + x+4/2001
b) 201-x/99 + 203-x/97 + 205-x/95 + 3 = 0
a) \(\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\)
⇔ \(\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)
⇔ \(\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}=\dfrac{x+2005}{2002}+\dfrac{x+2005}{2001}\)
⇔ \(\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)=0
Vì\(\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)<0 nên phương trinh đã cho tương đương:
x+2005=0 ⇔x=-2005
b) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
⇔ \(\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)
⇔ \(\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)
⇔ \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
Vì \(\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)>0\) nên phương trình đã cho tương đương:
300-x=0 ⇔ x=300
Giải phương trình:
a, x-1/2+x-1/4=1-2(x-1)/3.
b,2-x/2001-1=1-x/2002-x/2003
Giải phương trình sau :
\(\dfrac{x-4}{2001}+\dfrac{x-3}{2002}+\dfrac{x-2}{2003}=\dfrac{x-2003}{2}+\dfrac{x-2002}{3}+\dfrac{x-2001}{4}\)
\(\dfrac{x-4}{2001}\)- 1 +\(\dfrac{x-3}{2002}\)-1 + \(\dfrac{x-2}{2003}\)-1 =\(\dfrac{x-2003}{2}\)-1 + \(\dfrac{x-2002}{3}\)-1 +\(\dfrac{x-2001}{4}\)-1 <=> \(\dfrac{x-2005}{2001}\)+\(\dfrac{x-2005}{2002}\)+\(\dfrac{x-2005}{2003}\)-\(\dfrac{x-2005}{2}\)-\(\dfrac{x-2005}{3}\)-\(\dfrac{x-2005}{4}\)= 0 <=> (x-2005). (\(\dfrac{1}{2001}\)+\(\dfrac{1}{2002}\)+\(\dfrac{1}{2003}\)-\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)) =0 <=> x-2005=0 ( vì \(\dfrac{1}{2001}\) +\(\dfrac{1}{2002}\) +\(\dfrac{1}{2003}\)- \(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)- \(\dfrac{1}{4}\) khác 0) =>x = 2005
x-4/2001+ x-3/2002 + x-2/2003= x-2003/2 + x-2002/3 + x-2001/4
<=>(x-4/2001 -1)+(x-3/2002 -1)+(x-2/2003 -1)-(x-2003/2 -1)+
(x-2002/3 -1)+(x-2001/4 -1) =0
<=>x-2005/2001+ x-2005/2002+ x-2005/2003- x-2005/2-
x-2005/3- x-2005/4 =0
<=>(x-2005).(1/2001+1/2002+1/2003- 1/2- 1/3- 1/4)=0
<=>x-2005=0 (vì 1/2001+1/2002+1/2003-1/2-1/3-1/4)
<=>x=2005
Vậy pt có nghiệm là x=2005
\(\dfrac{x-4}{2001}+\dfrac{x-3}{2002}+\dfrac{x-2}{2003}=\dfrac{x-2003}{2}+\dfrac{x-2002}{3}+\dfrac{x-2001}{4}\)
\(\Leftrightarrow\dfrac{x-4}{2001}-1+\dfrac{x-3}{2002}-1+\dfrac{x-2}{2003}-1=\dfrac{x-2003}{2}-1+\dfrac{x-2002}{3}-1+\dfrac{x-2001}{4}-1\)
\(\Leftrightarrow\dfrac{x-2005}{2001}+\dfrac{x-2005}{2002}+\dfrac{x-2005}{2003}-\dfrac{x-2005}{2}-\dfrac{x-2005}{3}-\dfrac{x-2005}{4}=0\)
\(\Leftrightarrow\left(x-2005\right)\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}\ne0\right)=0\)
\(\Leftrightarrow x-2005=0\)
\(\Leftrightarrow x=2005\)
Vậy nghiệm của PT là \(x=2005\)
1/(x+2001)(x+2002) +1/(x+2002)(x+2003)+(1/(x+2003)(x+2004)+.......+ 1/(x+2006)(x+2007) =7/8
giải giúp mình chi tiết nha.