CMR các ps sau là ps tối giản
a) 2n+1/4n+3
b) 14n+2/21n+4
cm ps sau là ps tối giản
n3+2n/n4+3n2+1
CMR 21n + 4 / 14n + 3 là PS tối giản với mọi n thuộc N
k đúng cho mình với:
gọi d là Ư(21n+4;14n+3)
=>21n+4 và 14n+3 chia hết cho d
=>42n+8 và 42n+9 chia hết cho d
=>42n+9-42n+8 chia hết cho d
=>1 chia hết cho d
=>d thuộc ước của 1
=>d thuộc -1 và 1
=>21n+1/14n+3 là phân số tối giản
Gọi d là ƯCLN(21n + 4;14n + 3) nên ta có :
21n + 4 ⋮ d và 14n + 3 ⋮ d
<=> 2(21n + 4) ⋮ d và 3(14n + 3) ⋮ d
<=> 42n + 8 ⋮ d và 42n + 9 ⋮ d
=> (42n + 9) - (42n + 8) ⋮ d
=> 1 ⋮ d => d = 1
=> \(\frac{21n+4}{14n+3}\) là phân số tối giản ( đpcm )
cmr n thuộc z thì các ps sau tối giản
a, 15n+1/30n+1
CMR
\(\frac{21n+4}{14n+3}\) là 1 phân số tối giản với n thuộc N
Gọi UCLN(21n+4,14n+3)=d
Ta có:21n+4 chia hết cho d
14n+3 chia hết cho d
=>2(21n+4) chia hết cho d
3(14n+3) chia hết cho d
=>42n+8 chia hết cho d
42n+9 chia hết cho d
=>(42n+9)-(42n+8) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy \(\frac{21n+4}{14n+3}\) tối giản
Goi d là ƯCLN ( 21n + 4 ; 14n + 3 )
=> 21n + 4 ⋮ d <=> 42n + 8 ⋮ d
=> 14n + 3 ⋮ d <=> 42n + 9 ⋮ d
=> [ ( 42n + 8 ) - ( 42n + 9 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN (21n + 4; 14n + 3) = 1 => \(\frac{21n+4}{14n+3}\) là phân số tối giản
Tiếp tục là một câu hỏi nữa dành cho các cậu.
Chứng minh các phân số sau tối giản:
a)\(\frac{16n+5}{6n+2}\)
b)\(\frac{14n+3}{21n+4}\)
Chỉ thế thôi. Chúc các cậu may mắn.
a) Giải
Đặt \(d=\left(16n+5,6n+2\right)\)
\(\Rightarrow\hept{\begin{cases}\left(16n+5\right)⋮d\\\left(6n+2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[3\left(16n+5\right)\right]⋮d\\\left[8\left(6n+2\right)\right]⋮d\end{cases}}\)
\(\Rightarrow\left[8\left(6n+2\right)-3\left(16n+5\right)\right]⋮d\)
\(\Rightarrow\left[48n+16-48n-15\right]⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy phân số \(\frac{16n+5}{6n+2}\) tối giản với mọi n.
b) Giải
Đặt \(d=\left(14n+3,21n+4\right)\)
\(\Rightarrow\hept{\begin{cases}\left(14n+3\right)⋮d\\\left(21n+4\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[3\left(14n+3\right)\right]⋮d\\\left[2\left(21n+4\right)\right]⋮d\end{cases}}\)
\(\Rightarrow\left[3\left(14n+3\right)-2\left(21n+4\right)\right]⋮d\)
\(\Rightarrow\left[42n-9-42n-8\right]⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy phân số \(\frac{14n+3}{21n+4}\) tối giản với mọi n.
chứng minh ps sau tối giản
a,A=12n+1/30n+2 b,B=14n+17/21n+25
a. A= \(\frac{12n+1}{30n+2}\)
Gọi d là ước chung của 12n +1 và 30n +2
\(\Rightarrow\)12n + 1 \(⋮\)d => 5 (12n + 1) \(⋮\)d => 60n + 5 \(⋮\)d
\(\Rightarrow\)30n+2 \(⋮\)d = > 2 ( 30n + 2) \(⋮\)d => 60n + 4\(⋮\)d
\(\Rightarrow\)(60n + 5) - 60n + 4 \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d
\(\Rightarrow\)d= 1
\(\Rightarrow\)ƯCLN( 12n+ 1; 30n+2)
Vậy 12n+1/ 30n+2 là phân số tối giản
b. B= \(\frac{14n+17}{21n+25}\)
gọi d là ước chung của 14n+ 17 và 21n + 25
=> 14n+ 7 \(⋮\)d => 3(14n+17) \(⋮\)d => 42n + 51 \(⋮\)d
=> 21n+ 25 \(⋮\)d =.> 2(21n + 5) \(⋮\)d =.> 42n + 50 \(⋮\)d
=.> 42n + 51 - (42n + 50) \(⋮\)d
=> 1 \(⋮\)d
=> d= 1
vậy 14n + 17/ 21n + 25 là phân số tối giản
có chỗ ( 60n +5) - 60n + 4 là sai ấy nhé!
đúng là 60n + 5 - ( 60n + 4 ) mới đúng
nhớ k cho mik nha
a
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
Chứng minh rằng các cặp số tự nhiên sau nguyên tố cùng nhau vói mọi n \(\in\)N:
a) n và 2n+1
b) 2n+3 và 4n+8
c) 21n+4 và 14n+3
d) 12n+1 và 30n+2
a, n và 2n + 1
gọi d là ƯC( n;2n+1 )
=> ƯCLN( n;2n+1 ) = d
=> n \(⋮\) d
2n + 1 \(⋮\) d
đê : : n \(⋮\) d => 2.n \(⋮\) d = 2n chia hết cho d
ta có : 2n + 1 - 2n
=> 1 chia hết cho d
=> d = 1
vậy n và 2n + 1 là hai số nguyên tố cùng nhau ( sai thui )
b, 2n + 3 và 4n + 8
gọi d là ƯCLN( 2n + 3 ; 4n + 8 )
=> ƯCLN ( 2n + 3 ; 4n + 8 ) = d
=> 2n + 3 chia hết cho d
4n + 8 chia hết cho d
để : 2n + 3 chi chia hết cho d => 4n + 6 chia hết cho d
ta có : 4n + 8 - 4n + 6 chia hết cho d
=> 2 chia hết cho d => d thuộc Ư(2); Ư(2)= { 1 ; 2 }
=> d = 1 HOẶC 2
vậy 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau
CMR các số sau là phân số tối giản :
a )21n + 4 / 14n + 2
b) 2n + 1 / 2n ( n+ 1 )
CMR với mọi số tự nhiên n(n khác 0) các P/s sau là phân số tối giản
3n-2/4n-34n+1/6 n+1