Tìm n thuộc Z
n^2+2n-3/n^2-1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Tìm n thuộc Z
a)n-13/n+7=5/7
b)2n-5/3=n+4/2
c)n+10/2n-8 thuộc Z
d)n+3/2n-2 thuộc Z
e)n+10/n+1 rút gọn được
Bài 1: Cho A = n+10/2n+8
a) TÌm n thuộc Z để A là phân số
b) Tìm n thuộc Z để A thuộc Z
Bài 2: TÌm n thuộc Z để 2n+3/4n+1 là phân số tối giản
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
bài 2 Tìm n thuộc Z
A, n+1 thuộc Ư(n^2+2n-3)
B, n^2+2 thuộc B(n^2+1)
C, 2n+3 thuộc B(n+1)
a, n+1 thuộc Ư(n^2+2n-3)
=>n^2+2n-3 chia hết cho n+1
=>n^2+n+(n+1)-4 chia hết cho n+1
=>n(n+1)+(n+1)-4 chia hết cho n+1
=>4 chia hết cho n+1
=>n+1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {0;-2;1;-3;3;-5}
b, n2+2 thuộc B(n^2+1)
=>n^2+2 chia hết cho n^2+1
=>n^2+1+1 chia hết cho n^2+1
=>1 chia hết cho n^2+1
=>n^2+1 E Ư(1)={1;-1}
Ta có: n^2+1 = 1 => n^2 = 0 => n =0
n^2 + 1 = -1 => n^2 = -2 (loại)
Vậy n=0
c, 2n+3 thuộc B(n+1)
=>2n+3 chia hết cho n+1
=>2n+2+1 chia hết cho n+1
=>2(n+1)+1 chia hết cho n+1
=>2 chia hết chi n+1
=>n+1 E Ư(2)={1;-1;2;-2}
=>n E {0;-2;1;-3}
a, n+1 thuộc Ư(n^2+2n-3)
=>n^2+2n-3 chia hết cho n+1
=>n^2+n+(n+1)-4 chia hết cho n+1
=>n(n+1)+(n+1)-4 chia hết cho n+1
=>4 chia hết cho n+1
=>n+1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {0;-2;1;-3;3;-5}
b, n2+2 thuộc B(n^2+1)
=>n^2+2 chia hết cho n^2+1
=>n^2+1+1 chia hết cho n^2+1
=>1 chia hết cho n^2+1
=>n^2+1 E Ư(1)={1;-1}
Ta có: n^2+1 = 1 => n^2 = 0 => n =0
n^2 + 1 = -1 => n^2 = -2 (loại)
Vậy n=0
c, 2n+3 thuộc B(n+1)
=>2n+3 chia hết cho n+1
=>2n+2+1 chia hết cho n+1
=>2(n+1)+1 chia hết cho n+1
=>2 chia hết chi n+1
=>n+1 E Ư(2)={1;-1;2;-2}
=>n E {0;-2;1;-3}
:D
Cho B=(4n+1)/2n+3 (n thuộc Z)
1, tìm n thuộc Z để B thuộc Z
2, tìm n để B tối giản
3, tìm min , max của B
tìm n thuộc Z để 2n^2-n-1 chia hết cho 2n+3
Ta có: \(2n^2-n-1=2n^2+3n-4n-6+5=n\left(2n+3\right)-2\left(2n+3\right)+5\)
Vì \(n\left(2n+3\right)\)và \(-2\left(2n+3\right)\)chia hết cho \(2n+3\) nên để \(2n^2-n-1\)chia hết cho \(2n+3\) thì \(5\)phải chia hết cho \(2n+3\), tức là \(2n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Với \(2n+3=1\)thì \(n=-1\)
Với \(2n+3=-1\) thì \(n=-2\)
Với \(2n+3=5\)thì \(n=1\)
Với \(2n+3=-5\) thì \(n=-4\)
Vậy, để đa thức \(2n^2-n-1\) chia hết cho đa thức \(2n+3\) thì \(n=\left\{-2;-1;1;-4\right\}\) và \(n\in Z\)
CM:
a) (2n+3)2-9 chia hết cho 4 với n thuộc Z
b) n2(n+1)+2n(n+1) chia hết cho 6 với n thuộc Z.
c) n(2n-3)-2n(n+1) chia hết cho 5 với n thuộc Z.
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
b) \(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì \(n\in Z\Rightarrow\left\{{}\begin{matrix}x+1\in Z\\n+2\in Z\end{matrix}\right.\)
Mà n,n+1,n+2 là 3 sô nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+3\right)⋮6\left(dpcm\right)\)
tìm n thuộc Z biết n+1 thuộc Ư(n2+2n-3)
Tìm n thuộc Z để 2n^3-n^2+5n+6 chia hết cho 2n+1
2n3-n2+5n+6
=n2(2n+1)-2n2+5n+6
=n2(2n+1)-n(2n+1)+6n+6
=> 6n+6 chia hết 2n+1
3(2n+1)+3 chia hết 2n+1
=> 3 chia hết 2n+1
=> 2n+1 thuộc Ư(3)=1 ; 3 ; -1 ; -3
2n = 0 ; 2 ; -2 ; -4
n = 0 ; 1 ; -1 ; -2
kb vs mik nha