Những câu hỏi liên quan
TD
Xem chi tiết
H24
3 tháng 5 2015 lúc 8:53

1.3.5.....197.199 = \(\frac{\left(1.3.5.....197.199\right)\left(2.4.6.....198.200\right)}{2.4.6......198.200}\)\(\frac{1.2.3......199.200}{2^{100}.\left(1.2.3.....100\right)}=\frac{101.102.103......200}{2^{100}}=\frac{101}{2}.\frac{102}{2}.\frac{103}{2}.....\frac{200}{2}\)

Bình luận (0)
LP
19 tháng 3 2018 lúc 21:21

cậu giỏi quá

Bình luận (0)
MN
Xem chi tiết
LN
20 tháng 4 2016 lúc 19:13

1233333333333

Bình luận (0)
HC
Xem chi tiết
DH
17 tháng 4 2016 lúc 20:30

đề sai rồi bạn!

Bình luận (0)
DD
Xem chi tiết
DH
20 tháng 8 2017 lúc 10:40

Ta có :

\(VT=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}=VP\left(đpcm\right)\)

Bình luận (0)
PD
20 tháng 8 2017 lúc 10:54

Xét :

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{200}\right)\)

Thêm \(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\)vào mỗi vế ta có

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)

\(\RightarrowĐPCM\)

Bình luận (0)
PS
Xem chi tiết
DH
12 tháng 3 2017 lúc 19:28

Ta có : 

\(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{102}>\frac{1}{200}\)

\(\frac{1}{103}>\frac{1}{200}\)

\(..........\)

\(\frac{1}{200}=\frac{1}{200}\)

Cộng vế với vế ta được :

\(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\) (có 100 số \(\frac{1}{200}\) )\(=\frac{100}{200}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{200}>\frac{1}{2}\) (đpcm)

Bình luận (0)
HS
12 tháng 3 2017 lúc 19:28

Ta có:

1/101>1/200

1/102>1/200

...

1/199>1/200

=>1/101+1/102+...+1/103>1/200+1/200+...+1/200(100 số 1/200)

                                     =1/200.100=1/2

Vậy 1/101+1/102+1/103+...+1/200>1/2

Bình luận (0)
H6
12 tháng 3 2017 lúc 19:35

\(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{101}>\frac{1}{200}\)

...............

\(\frac{1}{200}=\frac{1}{200}\)

Cộng vế với vế ta đc:

\(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}>\frac{1}{200}+...+\frac{1}{200}\)(có 100 phân số \(\frac{1}{200}\))=\(\frac{1}{200}=\frac{1}{2}\)

=>...................

Bình luận (0)
HA
Xem chi tiết
NH
29 tháng 3 2017 lúc 21:02

Ta có :

\(1.3.5.7.....199\)

\(=\frac{1.2.3.4.5.6.7.....198.199.200}{2.4.6.....198.200}\) 

\(=\frac{\left(1.2.3.....99.100\right)\left(101.102.....200\right)}{\left(1.2.3.....99.100\right)\left(2.2.2.....2.2\right)}\)

 \(=\frac{101.102.....200}{2.2.....2}\)

\(=\frac{101}{2}.\frac{102}{2}.....\frac{200}{2}\left(đpcm\right)\)

Bình luận (0)
PK
Xem chi tiết
ND
7 tháng 5 2017 lúc 13:09

1/2=1/200+1/200+1/200+.....+1/200 (có 100 số )

1/101+1/102+....+1/200(có 100 số )

Vì 1/101>1/200

1/102>1/100

......

1/199>1/200

1/200=1/200

=>1/101+1/102+.....+1/200>1/200+1/200+...+1/200 có 100 số

=>1/101+1/102+.....+1/200>1/2

Bình luận (0)
KM
7 tháng 5 2017 lúc 13:09

Ta thấy \(\frac{1}{101}>\frac{1}{200};\frac{1}{102}>\frac{1}{200};\frac{1}{103}>\frac{1}{200};....;\frac{1}{200}=\frac{1}{200}\)

Mà dãy \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}\)có 100 phân số nên : 

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)( có 100 phân số \(\frac{1}{200}\))

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100=\frac{1.}{2}\left(đpcm\right)\)

Bình luận (0)
NG
7 tháng 5 2017 lúc 13:12

tổng \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)                có 100 số hạng

Ma cac so hang cua tong trên lớn hơn 1/200 = > tong tren lon hon 1/200 * 100 = 1/2 (dpcm) 

Bình luận (0)
HN
Xem chi tiết
NT
10 tháng 5 2019 lúc 5:43

Ta có:

\(\frac{1}{101}\)>\(\frac{1}{200}\)

\(\frac{1}{102}\)>\(\frac{1}{200}\)

\(\frac{1}{103}\)>\(\frac{1}{200}\)

...

\(\frac{1}{200}\)=\(\frac{1}{200}\)

\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{200}\)+\(\frac{1}{200}\)+..+\(\frac{1}{200}\)(100 số hạng)=\(\frac{1}{2}\)

\(\Rightarrow\)\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{2}\)

Bình luận (0)
NM
Xem chi tiết
NB
6 tháng 5 2016 lúc 18:56

Bạn tham khảo tại Câu hỏi của lê chí dũng - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

Chúc bạn học tốt!hihi

Bình luận (0)
NM
6 tháng 5 2016 lúc 18:57

Tks bạn nhé Nguyễn Thế Bảo

Bình luận (1)