Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NN
Xem chi tiết
KG
Xem chi tiết
NT
2 tháng 8 2023 lúc 17:47

\(A=n^4+2n^3+2n^2+n+7\)

\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)

\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)

\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)

\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)

Ta lại có :

\(\left(n^2+n+1\right)^2-A\)

\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)

\(=n^2+n-6\)

Để \(n^2+n-6>0\)

\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)

Nên A không phải là số chính phương

Xét \(-3\le n\le2\)

Để A là số chính phương

\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)

Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương

\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài

Bình luận (0)
BD
Xem chi tiết
NQ
10 tháng 10 2021 lúc 7:48

ta có :

undefined

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
NB
Xem chi tiết
AH
10 tháng 9 2023 lúc 0:01

Bình luận (0)
NN
Xem chi tiết
TA
3 tháng 7 2017 lúc 21:32

Đặt  \(A=n\left(n+1\right)\left(n+7\right)\left(n+8\right)\)

\(=\left(n^2+8n\right)\left(n^2+8n+7\right)\)   (1)

Đặt  \(t=n^2+8n\)   Vì n > 0 nên t > 0

Vì A là số chính phương đặt A=k2  \(\left(k\in N\right)\)   Vì t>0 => k > 0

(1)   \(\Rightarrow\)  \(t\left(t+7\right)=k^2\)        

\(\Leftrightarrow4t^2+28t-4k^2=0\)

\(\Leftrightarrow\left(4t^2+28t+49\right)-4k^2-49=0\)

\(\Leftrightarrow\left(2t+7\right)^2-\left(2k\right)^2=49\)

\(\Leftrightarrow\left(2t+7-2k\right)\left(2t+7+2k\right)=49\)

Xét các ước của 49 với chú ý rằng  \(2t+7-2k< 2t+7+2k\)  vì k > 0 từ đó dễ dàng tìm được t

Sau đó ta tìm được các giá trị của n.

Bình luận (0)
QH
Xem chi tiết

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
VT
6 tháng 2 2016 lúc 21:56

A)(0;0)(1;1)

B)Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

Bình luận (0)
ND
6 tháng 2 2016 lúc 21:51

a)xy=x+y

=>xy-x-y=0

=>x(y-1)-(y-1)-1=0

=>x(y-1)-(y-1)=1

=>(y-1)(x-1)=1

=>y-1 và x-1 E Ư(1)={+-1}=>y=2 thì x=2 và y=0 thì x=0

b)Câu này khó quá nhưng ủng hộ nha

Bình luận (0)
NT
Xem chi tiết