Những câu hỏi liên quan
BT
Xem chi tiết
H24
Xem chi tiết
H24
18 tháng 9 2023 lúc 22:52

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

Bình luận (0)
H24
Xem chi tiết
PQ
16 tháng 9 2021 lúc 17:05

Đề bài sai nhé bạn

Ví dụ x = 1 thì bthức = -1 - 6 + 10 = 3 không âm

Bình luận (0)
 Khách vãng lai đã xóa
AK
16 tháng 9 2021 lúc 17:06

\(-x^2-6x+10\)

\(=-1\left(x^2+6x-10\right)\)

=>  -x^2-6x+10   <  0  với mọi x

Bình luận (0)
 Khách vãng lai đã xóa
BL
Xem chi tiết
TT
24 tháng 7 2015 lúc 21:23

Biến đổi đưa về hằng đẳng thức rồi đánh giá

Bình luận (0)
NT
Xem chi tiết
CD
10 tháng 8 2016 lúc 13:12

kết bạn nhé

Bình luận (0)
MH
10 tháng 8 2016 lúc 13:19

A = -x2 + 6x - 10

= -(x2 - 6x + 10)

= -(x2 - 2.x.3 + 9 + 1)

= -(x2 - 2.x.3 + 32 +1)

= -[(x - 3)2 + 1]

Mà (x - 3)+ 1 \(\ge\)1

=> -[(x - 3)2 + 1] \(\le\)-1 \(< \)0

Vậy giá trị của A luôn âm với mọi giá trị của x.

Bình luận (0)
NA
Xem chi tiết
KN
21 tháng 8 2020 lúc 10:25

\(B=-10-x^2-6x\)

\(\Rightarrow B=-\left(x^2+6x+10\right)\)

\(\Rightarrow B=-\left(x^2+6x+9+1\right)\)

\(\Rightarrow B=-\left[\left(x+3\right)^2+1\right]\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+1\ge1\)

\(\Rightarrow-\left[\left(x+3\right)^2+1\right]\le-1\)

=> Đpcm

Bình luận (0)
 Khách vãng lai đã xóa
CQ
21 tháng 8 2020 lúc 10:26

B=\(-10-x^2-6x\)  

B=\(-x^2-6x-9-1\) 

B=\(-\left(x^2+6x+9\right)-1\)    

=\(-\left(x+3\right)^2-1\)   

Ta có : \(\left(x+3\right)^2\ge0\forall x\) 

\(-\left(x+3\right)^2\le0\) 

\(-\left(x+3\right)^2-1\le-1\)      

Vậy B luôn âm với mọi x 

Bình luận (0)
 Khách vãng lai đã xóa
XO
21 tháng 8 2020 lúc 10:27

Ta có B = -x2 - 6x - 10

= -x2 - 6x - 9 - 1

= -(x + 3)2 - 1 \(\le\) - 1 < 0

=> B < 0 với mọi x

Bình luận (0)
 Khách vãng lai đã xóa
SC
Xem chi tiết
KN
2 tháng 8 2019 lúc 17:19

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Bình luận (0)
KN
2 tháng 8 2019 lúc 17:22

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

Bình luận (0)
H24
Xem chi tiết
H24
11 tháng 10 2023 lúc 17:51

\(f,F=x^2+9y^2-8x+4y+27\) (sửa đề)

\(=\left(x^2-8x+16\right)+\left(9y^2+4y+\dfrac{4}{9}\right)+\dfrac{95}{9}\)

\(=\left(x^2-2\cdot x\cdot4+4^2\right)+\left[\left(3y\right)^2+2\cdot3y\cdot\dfrac{2}{3}+\left(\dfrac{2}{3}\right)^2\right]+\dfrac{95}{9}\)

\(=\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2+\dfrac{95}{9}\)

Ta thấy: \(\left(x-4\right)^2\ge0\forall x\)

             \(\left(3y+\dfrac{2}{3}\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2+\dfrac{95}{9}\ge\dfrac{95}{9}>0\forall x;y\)

hay \(F\) luôn dương với mọi \(x;y\).

\(Toru\)

Bình luận (0)
CS
Xem chi tiết
CS
29 tháng 3 2020 lúc 22:41

cảm ơn các bạn nhiều

Bình luận (0)
 Khách vãng lai đã xóa
TY
31 tháng 3 2020 lúc 14:20

\(-\frac{1}{4}x^2+x-2\)

\(=-\left(\frac{1}{4}x^2-2\cdot\frac{1}{2}x+1\right)-1\)

\(=-\left(\frac{1}{2}x-1\right)^2-1\)

Do \(\left(\frac{1}{2}x-1\right)^2\ge0\Rightarrow-\left(\frac{1}{2}x-1\right)^2\le0\Rightarrow-\left(\frac{1}{2}x-1\right)^2-1< 0\)

Vậy \(\left(-\frac{1}{4}\right)x^2+x-2\) luôn nhận giá trị âm với mọi giá trị của biến

Bình luận (0)
 Khách vãng lai đã xóa
TY
31 tháng 3 2020 lúc 14:23

\(\left(1-2x\right)\left(x-1\right)-5\)

\(=x-1-2x^2+2x-5\)

\(=-2x^2+3x-6\)

\(=-2\left(x^2-2\cdot\frac{3}{4}x+\frac{9}{16}\right)-\frac{39}{8}\)

\(=-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}\)

Mà \(\left(x-\frac{3}{4}\right)^2\ge0\Rightarrow-2\left(x-\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}< 0\)

Vậy \(\left(1-2x\right)\left(x-1\right)-5\) luôn nhận giá trị âm với mọi giá trị của biến

Bình luận (0)
 Khách vãng lai đã xóa