Phan tich thanh nhan tu:
\(x^2+2xy-8y^2+2xz+14yz-3z^2\)
Phân tích đa thức thành nhân tử:
x^2 + 2xy - 8y^2 + 2xz + 14yz - 3z^2
x^4 - 13x^2 + 16
x2 + 2xy - 8y2 + 2xz + 14yz - 3z2
= ( x2 + y2 +z2 + 2xy + 2yz ) + ( -9x2 + 12yz - 4x2 )
= ( x + y +z )2 - [ (3x)2 - 2.3.x.2y + ( 2x)2
= ( x + y +z )2 - ( 3y - 2x)2
= ( x + y +z - 3y + 2x )(x+ y + z + 3y - 2x )
a,x2-4x+4-y2+2y-1
b, x2+2xy-8y2+2xz+14yz-3z2
c,3x2-22xy-4x+8y+7y2+1
x^2-4+4xy-8y. Phan tich da thuc thanh nhan tu
x^2-4+4xy-8y=x^2+4xy+4y^2-4y^2-8y-4=(x+2y)^2-(2y+2)^2=(x+2y-2y+2)(x+2y+2y-2)=(x+2)(x+4y-2)
phan tich da thuc thanh nhan tu
x^2-x-y^2-y
x^2-2xy+y^2-z^2
bai 32 va 33 sbt
lop 8 bai phan tich da thuc thanh nhan tu bang cach nhom hang tu
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
con bai 32, 33 neu ban tra loi duoc minh h them
phan tich da thuc thanh nhan tu
9-x^2+2xy-y^2
\(=3^2-\left(x-y\right)^2=\left[3-\left(x-y\right)\right]\left[3+\left(x-y\right)\right]=\left(3-x+y\right)\left(3+x-y\right)\)
\(9-x^2+2xy-y^2\)
\(=9-\left(x^2-2xy+y^2\right)\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3-x-y\right)\)
phan tich thanh cac nhan tu da thuc
x^2-25+y+2xy
Phân tích đa thức thành nhân tử:
34x4 + 1
x4 + 4y4
x2+2xy-8y2+2xz+14yz-3z2
mn giúp mk vs mai mk phải nộp bài òi
Phan tich da thuc thanh nhan tu
x2-2xy+y2-3x+3y
=(x^2-2xy-y^2)-(3x-3y)
=(x-y)^2-3(x-y)
=(x-y)(x-y-3)
Phan tich da thuc thanh nhan tu x2_2xy+y2-9z2
x^2-2xy+y^2-9z^2
=(x-y)^2-9z^2
=(x-y)^2-(3z)^2
=(x-y-3z)(x-y+3z)