Những câu hỏi liên quan
NT
Xem chi tiết
DD
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
H24
31 tháng 5 2018 lúc 11:21

Ai giúp câu a, câu d vs

Bình luận (0)
LC
16 tháng 5 2021 lúc 0:04

( Mình sẽ làm tắt nha bạn, mấy chỗ đấy nó dễ rùi nếu ko hiểu thì cmt nhé )

a) Ta có: \(O_1B//O_2C\)( cùng vuông góc với BC )

\(\Rightarrow\widehat{BO_1A}+\widehat{CO_2A}=180^0\)

\(\Leftrightarrow\left(180^0-2\widehat{BAO_1}\right)+\left(180^0-2\widehat{CAO_2}\right)=180^0\)

\(\Leftrightarrow2\left(\widehat{BAO_1}+\widehat{CAO_2}\right)=180^0\)

\(\Leftrightarrow\widehat{BAO_1}+\widehat{CAO_2}=90^0\)

\(\Rightarrow\widehat{BAC}=90^0\)

=> tam giác ABC vuông tại A

b) \(\widehat{O_1BA}+\widehat{MBA}=\widehat{O_1AB}+\widehat{BAM}=90^0\)

\(\Rightarrow\widehat{O_1AM}=90^0\)

\(\Rightarrow AM\perp AO_1\)

=> AM là tiếp tuyến của \(\left(O_1\right)\)

CMTT : AM là tiếp tuyến của \(\left(O_2\right)\)

=> AM là tiếp tuyến chung của \(\left(O_1\right);\left(O_2\right)\)

+) Ta có: \(\hept{\begin{cases}\widehat{BMO_1}=\widehat{AMO_1}\\\widehat{CMO_2}=\widehat{AMO_2}\end{cases}}\)

Ta có; \(\widehat{BMO_1}+\widehat{AMO_1}+\widehat{CMO_2}+\widehat{AMO_2}=180^0\)

\(\Leftrightarrow2\left(\widehat{O_1AM}+\widehat{AMO_2}\right)=180^0\)

\(\Leftrightarrow\widehat{O_1AM}+\widehat{AMO_2}=90^0\)

\(\Leftrightarrow\widehat{O_1MO_2}=90^0\)

\(\Rightarrow O_1M\perp O_2M\)

d) Ta có: \(\widehat{O_1BA}=\widehat{O_1AB}=\widehat{O_2AD}=\widehat{O_2DA}\)

\(\widehat{\Rightarrow O_1BA}=\widehat{O_2DA}\)mà 2 góc này ở vị trí so le trong

\(\Rightarrow O_1B//O_2D\)

\(\Rightarrow\frac{AB}{AD}=\frac{AO_1}{AO_2}\left(1\right)\)

CMTT \(\Rightarrow\frac{AE}{AC}=\frac{AO_1}{AO_2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{AB}{AD}=\frac{AE}{AC}\)

\(\Rightarrow AB.AC=AD.AE\)

\(\Rightarrow\frac{1}{2}AB.AC=\frac{1}{2}AD.AE\)

\(\Rightarrow S_{\Delta ADE}=S_{\Delta ABC}\)

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
24 tháng 4 2017 lúc 3:19

Chọn B

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 10 2019 lúc 2:16

a, MPHQ là hình chữ nhật => MH = PQ

b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA

c, P M H ^ = M B H ^ => P Q H ^ = O 2 Q B ^ => PQ là tiếp tuyến của  O 2

Tương tự PQ cũng là tiếp tuyến ( O 1 )

Bình luận (0)
NN
Xem chi tiết
YF
Xem chi tiết
NM
30 tháng 10 2019 lúc 16:18

Nối O1O2; O2O3; O1O3. Đây là các đường nối tâm của hai vòng tròn tiếp xúc nhau

=> O1; C; O3 thẳng hàng, O1; A; O2 thẳng hàng và O2; B; O3 thẳng hàng

Nối E với O3 và F với O3

Xét tam giác O1AC có O1A=O1C (bk đường tròn (O1)) => tg O1AC cân tại O1 => ^O1AC=^O1CA (1)

Xét tam giác O3CE có O3C=O3E (bk đường tròn (O3)) => tg O3CE cân tại O3 => ^O3CE=^O3EC (2)

Mà ^O1CA=^O3CE (góc đối đỉnh) (3)

Từ (1) (2) và (3) => ^O1AC=^O3EC => O1O2//O3E  (*)

Tương tự như thế ta cũng c/m được O1O2//O3F (**)

Từ (*) và (**) => E; F; O3 thảng hàng (Từ O3 chỉ dựng được duy nhất 1 đường thẳng // O1O2)

Bình luận (0)
 Khách vãng lai đã xóa
TK
Xem chi tiết
VL
Xem chi tiết