Cho 7 STN bất kì, CMR trong 7 số đó có ít nhất 3 số có tổng chia hết cho 3
cho 7 STN bất kì CMR: ta luôn chọn được 4 số có tổng chia hết cho 3
BA SO TU NHIEN bat ki thuoc hai dang chan va le
theo nguyen li dirich le thi se co it nhat hai so co cung dang chia het cho 2
=>trong 7 so tu nhien thi se co hai so chia het cho 2
ta goi hai so la a1 va a2
=>a1+a2 chia het cho 2=>a1+a2=2k
con lai 5so tuong tu ta lai co 2 so co tong chia het cho hai dat la a3 va a4
=>a3+a4 =2q
con lai ba so ta lai duoc hai so co tong chia het cho 2 dat la a5 va a6
=> a5 +a6=2n
vay ......................
cho 7 STN bất kì. CMR ta luôn chọn đc 4 số có tổng chia hết cho 4
CMR trong 10 stn bất kì luôn có 2 số có tổng hoặc hiệu chia hết cho 10
Giải thích rằng trong 7 số tự nhiên bất kì bao giờ cũng tồn tại 1 số chia hết cho 7 hay ít nhất hai số có hiệu chia hết cho 7
Chứng minh rằng :
a) Trong 11 số tự nhiên liên tiếp có ít nhất 2 số có hiệu chia hết cho 10
b) Trong 100 số tự nhiên liên tiếp luôn có 2 số có tổng chia hết cho 50
c) A = 30 + 31 + 32 + ...... + 32008 có chữ số tậnCho cùng là 1
d) Cho 20 số nguyên bất kỳ, sao cho tổng 5 số tự nhiên bất kì là 1 số nguyên âm, chứng minh rằng trong 20 số đó có ít nhất 15 số nguyên âm
e) Trong 29 số tự nhiên liên tiếp luôn tồn tại 5 số chia hết cho 7
Các bạn làm ơn giúp mình với !!!!
a ) Gọi 11 số tự nhiên liên tiếp 1 bất kì là a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ; a + 5 ; a + 6 ; a + 7 ; a + 8 ; a + 9 ; a + 10
Ta thấy : ( a + 10 ) - a = 10 .
Mà 10 lại chia hết cho 10
Suy ra trong 11 số tự nhiên liên tiếp luôn có 2 số có hiệu là 10 ( ko phải ít nhất nha bạn )
b ) Gọi 100 số tự nhiên liên tiếp bất kì là 50a ; 50a + 1 ; ... ; 50a + 99
Ta thấy ( 50a + 49 ) + ( 50a + 51 ) = 100a + 100
( 50a + 48 ) + ( 50a + 52 ) = 100a + 100
( 50a + 1 ) + ( 50a + 49 ) = 100a + 50
Mà 50 và 100 thì lại chia hết cho 50
Suy ra trong 100 số tự nhiên liên tiếp luôn có ít nhất 2 số có tổng chia hết cho 50
Bài 1 : Cho 7 số tự nhiên bất kì. CMR bao giờ cũng có thể chọn ra 2 số có hiệu chia hết cho 6
Bài 2 : CMR trong 6 số tự nhiên liên tiếp luôn tìm được hiệu 2 số chia hết cho 5
Bài 3 : Cho 3 số lẻ. CMR tồn tại 2 số có tổng và hiệu chia hết cho 8
Bài 1
6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp
Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn
Bài 2
5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha
CMR trong 5 số tự nhiên bất kỳ luôn tìm được ít nhất 3 số có tổng chia hết cho 3
CMR trong 5 số tự nhiên bất kỳ luôn tìm được ít nhất 3 số có tổng chia hết cho 3
vì cứ 3 số tự nhên liên tiế lại có 1 số chia hết cho 3 viết dưới dạng 3a(a>0), 1 số chia 3 dư 1 viết dướng dạng 3a-11 và 1 số chia 3 dư 2 viết dưới dạng 3a-2
vậy ta có tổng 3 số tự nhiên liên tiếp là: 3a+3a-1+3a-2=9a-3 luôn chia hết cho 3
1.Cho S=3^0+3^1+3^2+3^3+...+3^10.Tìm chữ số tận cùng của S.CMR:S không phải là số chính phương
2.cho 100 số tự nhiên bất kì . chứng minh rằng ta có thể chọn ra 15 số sao cho 2 số bất kì trong 15 số đó có hiệu chia hết cho 7
3.CMR tồn tại 1 số có dạng 201220122012... chia hết cho 2013
1.S=(3^0+3^1+3^2)+(3^3+3^4+3^5+3^6)+...+(3^27+3^28+3^29+3^30) S=13+3^3.(3^0+3^1+3^2+3^3)+...+3^27.(3^0+3^1+3^2+3^3) =13+3^3.40+...+3^27.40 =13+(3^3+...+3^27).40 =13+(...0) =(...3)
Vậy có tận cùng la 3 va ko co so chính phương nào có tận cùng là 3 nên ....................................