Những câu hỏi liên quan
MC
Xem chi tiết
H24
4 tháng 1 2017 lúc 16:30

Mình chỉ làm được ý 3 thôi: 

Bình luận (0)
AK
4 tháng 1 2017 lúc 16:40

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

Bình luận (0)
TN
6 tháng 1 2017 lúc 19:53

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 2+ 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

Bình luận (0)
BT
Xem chi tiết
TT
15 tháng 12 2016 lúc 12:43

\(=5^{20}+\left(5^2\right)^{11}+\left(5^{ }^3\right)^7\)

=\(5^{^{ }20}+5^{22}+5^{21}\)

\(=5^{20}\cdot\left(1+5^2+5^1\right)\)

=\(5^{20}\cdot\left(1+25+5\right)\)

=\(5^{20}\cdot31\)

Vì 31 chia hết chó 31 nên

\(5^{20}+25^{^{ }11}+125^7\)chia hết cho 31

Bình luận (0)
SK
15 tháng 12 2016 lúc 12:43

\(^{5^{20}+25^{11}+125^7}\)=\(1.5^{20}+25.25^{10}+\left(5^3\right)^7\)=\(1.5^{20}+25.\left(5^2\right)^{10}+5^{21}\)=\(1.5^{20}+25.5^{20}+5.5^{20}\)

=\(^{5^{20}.\left(1+25+5\right)}\)=\(5^{20}.31\)chia hết cho 31

Vậy \(5^{20}+25^{11}+125^7\)chia hết cho 31

Bình luận (0)
LN
10 tháng 12 2017 lúc 20:49

5^20+25^11+125^7=5^20+(5^2)^11+(5^3)^7= 5^20+5^22+5^21=5^20(1+5^2+5)=5^20.31

Vậy 5^20+25^11+125^7 chia hết cho 31

Bình luận (0)
DL
Xem chi tiết
H24
3 tháng 12 2017 lúc 13:26

Ta có:\(7^0+7^1+7^2+...+7^{2011}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{2010}+7^{2011}\right)\)

\(=8+8.49+...+8.7^{2010}\)

\(=8\left(1+49+..+7^{2010}\right)⋮8\)

Vậy \(7^0+7^1+7^2+...+7^{2010}+7^{2011}⋮8\)

Bình luận (0)
BH
3 tháng 12 2017 lúc 13:27

= 7 mũ ko . 1 + 7 mũ 0 .7 ( tách 7 mũ 1 ) +.........+ 7 mũ 2010 .1 + 7 mũ 2010 . 7

= 7 mũ ko . ( 1+7 ) + 7 mũ 2 . ( 1 + 7 ) + ..... + 7 mũ 2010 . ( 1+ 7 )

= 7 mũ ko . 8 + 7 mũ 2 . 8 + .... + 7 mũ 2010 . 8 

= ( 7 mũ 0 + 7 mũ 2 + 7 mũ 4 + .... + 7 mũ 2008 + 7 mũ 2010 ) . 8 .... chia hết cho 8 

=> ( 7 mũ 0 + 7 mũ 1 + 7 mũ 2 + ..... 7 mũ 2010 + 7 mũ 2011 ) chia hết cho 8

Bình luận (0)
TD
22 tháng 12 2018 lúc 19:59

7 mũ 0 +7 mũ 1 + 7 mũ 2 + ....... +7 mũ 2010 +7 mũ 2011

Chia hết cho 8 các bn nhé

Bình luận (0)
HL
Xem chi tiết
NL
Xem chi tiết
ML
13 tháng 12 2015 lúc 18:06

7+ 7+ 72 + 73 + ... + 72008 + 72009

= (1 + 7) + (1 + 7) . 73 + ... + (1 + 7) . 72009

=8 + 8 . 73 + ... + 8 . 72009

= 8 . (1 + 73 + ... + 72009)

Vậy tổng trên chia hết cho 8

Bình luận (0)
NP
13 tháng 10 2016 lúc 20:37

Ta có : ( 70 + 71 + 72 + 73 + ..... + 72008 + 72009 

(=)  ( 1 + 7 + 72 + 7 + ...... + 72008 + 72009 

(=) 1 . ( 1 + 7 ) + 72 . ( 1 + 7 ) + ....... + 72008 . ( 1 + 7 )

(=) ( 1 + 7 ) . ( 1 + 72 + ..... + 72008 )

(=) 8 . ( 1 + 72 + ..... + 72008 ) chia hết cho 8 ( vì 8 chia hết cho 8 )

Bình luận (0)
PX
22 tháng 10 2017 lúc 11:12

mik giống Nguyễn Thế Mãnh

Bình luận (0)
H24
Xem chi tiết
H24
31 tháng 10 2023 lúc 18:55

sossososo

:)))

Bình luận (0)
LP
31 tháng 10 2023 lúc 19:07

Ta có \(B=5^{2024}+5^{2023}+5^{2022}\)

\(B=5^{2022}\left(5^2+5+1\right)\)

\(B=31.5^{2022}⋮31\)

Vậy \(B⋮31\) (đpcm)

Bình luận (0)
H24
Xem chi tiết
LD
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Bình luận (0)
NN
10 tháng 12 2017 lúc 21:36

Thanks bạn

Bình luận (0)
DL
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
XO
8 tháng 12 2020 lúc 18:21

165 - 215

= (24)5 - 215

= 220 - 215

= 215(25 - 1)

= 215.31 \(⋮31\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
DH
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Bình luận (0)
 Khách vãng lai đã xóa