Những câu hỏi liên quan
H24
Xem chi tiết
H24
18 tháng 12 2018 lúc 19:20

\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)

\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)

b, tự tương

Bình luận (0)
HN
18 tháng 12 2018 lúc 19:24

\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\)         (  vì \(28a+28⋮7\) ) 

                     \(\Leftrightarrow30a+33⋮7\)

                     \(\Leftrightarrow3.\left(10a+11\right)⋮7\)

                     \(\Leftrightarrow10a+11⋮7\)   (  vì \(\left(3;7\right)=1\) ) 

Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)

Câu b bn xem lại đề hộ mk chút nhé!

Bình luận (0)
H24
Xem chi tiết
H24
8 tháng 12 2017 lúc 19:46

\(A=3^1+3^2+...+3^{30}\)

=> A=3(1+3) +...+ 329(1+3)

        =3.4+ ... + 329.4 \(⋮\)4

Chia het 13 ban lam tuong tu nhe

Bình luận (0)
IM
Xem chi tiết
PT
3 tháng 7 2015 lúc 20:03

a) Ta sẽ dùng cách cm gián tiếp:

     Cho A = 14^13 + 14^12 + .... +14 + 1

=> 14A    = 14^14 + 14^13 +...+14^2 +14

=> 14A - A = (14^14 + 14^13 +...+14^2 +14) - (14^13 + 14^12 + .... +14 + 1)

13A = 14^14 - 1

Vì 13A chia hết cho 13 nên 14^14 - 1 chia hết cho 13 (ĐPCM)

b) Tương tự như vậy: 

 Cho B = 2015^2015 + 2015^2014 + .... +2015 + 1

=> 2015B    = 2015^2016 + 2015^2015 +...+2015^2 +2015

=> 2015B - B = (2015^2016 + 2015^2015 +...+2015^2 +2015) - (2015^2015 + 2015^2014 + .... +2015 + 1)

2014B = 2015^2016 - 1

Vì 2014B chia hết cho 2014 nên 2015^2016 - 1 chia hết cho 2014 (ĐPCM)

Bình luận (0)
CG
5 tháng 7 2015 lúc 16:42

Bạn học đồng dư rồi đúng ko? ình sẽ giải theo cách đồng dư nhé :

a, 14^14đồng dư 1^14đồng dư 1(mod13) 

Suy ra 14^14 -1 đồng dư 1-1 đồng dư 0 (mod13)   (đpcm)

b, tương tự bạn nhé 2015^2016 đồng dư 1^2016 đồng dư 1 

...........rồi bạn suy ra nhé

 

  

Bình luận (0)
KY
Xem chi tiết
NY
Xem chi tiết
DP
5 tháng 11 2020 lúc 20:01

Giải:

a)    A = 21 + 22 + 23 + 24 + .............. + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7

=>  A \(⋮\)cả 3 và 7

Vây  A \(⋮\)cả 3 và 7

b) B = 31 + 32 + 33 + 34 + ............... + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n 

mà 32 \(⋮\)4

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13

=> B \(⋮\)cả 4 và 13

Vậy  B \(⋮\)cả 4 và 13

c)  C = 51 + 52 + 53 + 54 + ................... + 52010

Ta có : 

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 54 \(⋮\)6

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31 

=> C \(⋮\)cả 6 và 31

Vậy C \(⋮\)cả 6 và 31

d)  D = 71 + 72 + 73 + 74 + ...................... + 72010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 72 \(⋮\)8

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57

=> D \(⋮\)cả 8 và 57

Vậy  D \(⋮\)cả 8 và 57

Học tốt!!!

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
N1
Xem chi tiết
NC
22 tháng 10 2018 lúc 13:15

a chia  hết cho b => a=k.b, k thuộc Z

b chia hết cho c => b=m.c, m thuộc Z

Suy ra: a=k.b=k.m.c chia hết cho c 

Bình luận (0)
H24
22 tháng 10 2018 lúc 13:18

\(a⋮b\Rightarrow a=bk\)\(\left(k\inℕ\right)\)\(\left(1\right)\)

\(b⋮c\Rightarrow b=cq\)\(\left(q\inℕ\right)\)\(\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow a=cqk\)

\(\Rightarrow c\inƯ\left(a\right)\)

\(\Rightarrow a⋮c\left(đpcm\right)\)

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 1 2016 lúc 12:22

vì |a| =a và |b| cũng bằng b mà a = b

suy ra |a| cũng chia hết cho |b|

 

Bình luận (0)
VN
Xem chi tiết
TT
6 tháng 1 2018 lúc 19:41

a+ 5b chia hết cho 7

=> 10*(a+5b) chia hết cho 7

=> 10a+50b chia hết cho 7

=> 10a+ b + 49 b chia hết cho 7

mà 49b chia hết cho 7

=> 10a+b chia hết cho 7

Bình luận (0)
VN
6 tháng 1 2018 lúc 19:38

trình bày đầy đủ, giải hiểu giùm mk nha

Bình luận (0)
NQ
6 tháng 1 2018 lúc 19:40

a+5b chia hết cho 7 

=> 3.(a+5b) chia hết cho 7 

=> 3a+15b chia hết cho 7

Mà 7a và 14b đều chia hết cho 7

=> 3a+15b+7a-14b chia hết cho 7

=> 10a+b chia hết cho 7

=> ĐPCM

Tk mk nha

Bình luận (0)
HA
Xem chi tiết
HT
25 tháng 7 2019 lúc 18:05

Ta có : \(17^517.17^4\)có chữ số tận cùng là 7

            \(24^4\)có chữ số tận cùng là 6

            \(13^{21}=13.\left(13^4\right)^5\)có tận cùng là 3 (\(13^4\)có tận cùng là 1)

           Vậy \(17^5+24^4+13^{21}\)có tận cùng ta \(7+6-3=10\)chia hết cho \(10\)

          

Bình luận (0)