Chứng minh rằng 2n+3 chia het cho 3n+1
tim so nguyen n
a)n+7 chia het cho n +2
b) 9-n chia het cho n-3
c)n^2 +n+17 chia het cho n +1
d) n ^ 2 +25 chia het cho n+2
e) 2n+7 chia het cho n+1
g)3n ^2 +5 chia het cho n -1
h) 3n+7 chia het cho 2n+1
i)2n^2 +11 chia het cho 3n+1
giup minh nha mai minh phai nop roi
a.n + 7 chia hết cho n+2
=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 thuộc tập hợp các số : 5;-5;1;-1
=> n thuộc tập hợp các số : 3;-7;-1;-3
b.9-n chia hết cho n-3
=> 6 - n - 3 chia hết cho n-3
=> 6 chia hết cho n-3
=> n -3 thuộc tập hợp các số : 1;-1;6;-6
=> n thuộc tập hợp các sô : 4;2;9;-3
Giải hết ra dài lắm
k mk nha
chứng minh ràng
3n+1 chia het cho 11-2n
giup minh bai nay nha!
tim so tu nhien n biet:
A, 3n + 7 chia het cho n+2
B, 6n +7 chia het cho 2n+1
C, 3n^3 n^2+4 chia het cho 3n+1
D, 3n^3 + 10n^2 - 5 chia het cho 3n+1
B,
6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1
Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ
Ư (4) ={ 1;2;4}
Vì n là số lẻ nên
2n + 1 =1
2n =1-1
2n =0
n = 0 : 2 =0
Vậy n =0
A3n+7 chia het cho n+2
3n-12+5 chia het cho n+2
(3n-12)+5 chia het cho n+2
3(n-4)+5 chia het cho n+2
=>5 chia het cho n+2
=>n+2 thuoc (U)5={1;-1;5;-5}
Neu:n+2=1=>n=-1(loai)
Neu:n+2=-1=>n=-3(loai)
Neu:n+2=5=>n=3
Neu:n+2=-5=>n=-7(loai)
Vay:n=3
3n+20 chia het cho 2n+1
2n+25 chia het cho 2n-3
GIÚP MÌNH VÓI CÁC BẠN MINH ĐANG CẦN GẤP
Để 2n+25\(⋮\)2n-3
=> (2n-3) + 28 \(⋮\)2n-3
=>2n-3\(\in\)Ư(28)
Ma 2n-3 la so le
Đến đây bạn kẻ bảng là ra. còn câu kia bạn nhân 2 rồi làm tương tự là ra những câu kia bạn phải thử lại nhé
Bạn thiếu dữ kiện là n thuộc Z nhé
3n+20 chia hết cho 2n+1
=> 6n+40 chia hết cho 2n+1
=> 3(2n+1) +37 chia hết cho 2n+1
Mà 3(2n+1) chia hết cho 2n+1
=> 37 chia hết cho 2n+1
=> 2n+1 thuộc Ư(37) = (-1,1,-37,37)
bạn xét trường hợp rồi có n
chung minh
a.n+7CHIA HET CHO n-2
b.2n+3 chia het cho n-2
c.4n+5 chia het cho n-1
d.4n+5 chia het cho2n+1
e.2n+7chia het cho 3n-1
f.3n+1chia het cho11-2n
giải giúp em nhé
đây là bài về nhà của cậu à
n+7 chia het n-2
suy ra (n-2)+9 chia het n-2
suy ra 9 chia het n-2
suy ra n-2 \(\in\) Ư(9)={1;3;9} nếu bạn chưa học số âm
suy ra n-2 \(\in\) Ư(9)={1;3;9;-1;-3;-9} nếu bạn học số âm rồi
n-2=1 n-2=3 n-2=9
n =1+2 n =3+2 n =9+2
n = 3 n =5 n =11 nếu bạn học số âm rồi thì làm tiếp theo cách này còn nếu chưa thì đến đây là hết
chung minh
3n+1 chia het cho 2n+3
n^2+5 chia het cho n+1
2n^2+2n chia het cho2n^2+2
(3n+1)\(⋮\)(2n+3)
=>[2(3n+1)-3(2n+3)]\(⋮\)(2n+3)
=> [6n+2-6n-9] \(⋮\)(2n+3)
=> -7 \(⋮\)(2n+3)
=>2n+3\(\in\)Ư(-7)={-1;-7;1;7}
Ta có bảng:
2n+3 | -1 | -7 | 1 | 7 |
n+3 | 7 | 1 | -7 | -1 |
n | 4 | -2 | -10 | -4 |
Vậy n\(\in\){4;-2;-10;-4}
(n2 +5)\(⋮\)(n+1)
=>[(n2 +5)-n(n+1)]\(⋮\)(n+1)
=>[n2+5-n2-1] \(⋮\)(n+1)
=> 4 \(⋮\)(n+1)
=>n+1\(\in\)Ư(4)={-1;-2;-4;1;2;4}
Ta có bảng:
n+1 | -1 | -2 | -4 | 1 | 2 | 4 |
n | -2 | -3 | -5 | 0 | 1 | 3 |
Vậy n={-2;-3;-4;0;1;3}
Mik chỉ làm đc 2 câu thôi nếu đúng thì k cho mk nhé!
Chứng minh rằng với mọi số nguyên dương n thì:
B = 3n+3 - 2n+3 + 3n+2 - 2n+1 chia hết cho 10;
Chứng minh rằng với mọi số nguyên dương n thì:
A = 3n+3 + 3n+1 + 2n+2 + 2n+1 chia hết cho 6
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
Chứng minh rằng với mọi số nguyên dương n thì : A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1
Chia hết cho 6.
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6