Chứng minh rằng \(\sqrt[3]{3}+\sqrt[3]{9}\) là số vô tỉ.
Giúp mình với, mình cần gấp lắm!
Chứng minh rằng biểu thức sau nhận giá trị nguyên:
\(B=\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3-11\sqrt{2}}}\)
AI GIÚP MÌNH VỚI. MÌNH CẦN GẤP
Chứng minh rằng:
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=9\)
mk cần gấp lắm
Ta có :
\(\frac{1}{\sqrt{k+\sqrt{k+1}}}\) =\(\frac{\sqrt{k+1}-\sqrt{k}}{k+1-k}\)= \(\sqrt{k+1-\sqrt{k}}\)
Từ đó ta được:
\(y=\sqrt{2-\sqrt{1+\sqrt{3-\sqrt{2+\sqrt{4-\sqrt{3+...+\sqrt{100-\sqrt{99=\sqrt{100-\sqrt{1=9}}}}}}}}}}\)
=>
<br class="Apple-interchange-newline"><div id="inner-editor"></div>11+√2 +1√2+√3 +...+1√99+√100 =9
Làm nè.
Giải:
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=9\)
\(=\sqrt{2}-1+\sqrt{2}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)
\(=\sqrt{10}-1\)
\(=9\)
\(\RightarrowĐPCM\)
P/s: Ko chắc đâu. Bn xem thêm tại Câu hỏi của Mai Thanh Xuân - Toán lớp 9 - Học toán với OnlineMath
Bài 1: Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\sqrt{\frac{a+b+4c}{a+b}}+\sqrt{\frac{b+c+4a}{b+c}}+\sqrt{\frac{c+a+4b}{c+a}}\ge3\sqrt{3}.\)
Bài 2:Cho các số thực dương a,b,c thoả mãn abc=1. Chứng minh rằng:
\(\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}+\sqrt[3]{\left(\frac{2b}{bc+1}\right)^2}+\sqrt[3]{\left(\frac{2c}{ca+1}\right)^2}\ge3.\)
Giúp mình với! Mình cần gấp.
1)
Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)
Dấu "=" xảy ra khi a=b=c
2)
\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)
Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.....\frac{1}{\sqrt{99}+\sqrt{100}}=9\) =9
Bạn nào chứng minh giúp mình với
Mình biết ơn nhiều lắm ạ!
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right).\left(1+\sqrt{2}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right).\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right).\left(\sqrt{99}+\sqrt{100}\right)}\)
\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\)
Chứng minh rằng các số sau là số vô tỉ
\(2\sqrt{2}+\sqrt{3}\)
\(\sqrt{3}-\sqrt{2}\)
Giả sử \(2\sqrt{2}+\sqrt{3}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(2\sqrt{2}+\sqrt{3}\right)^2=x^2\\ \Leftrightarrow11+4\sqrt{6}=x^2\\ \Leftrightarrow\sqrt{6}=\dfrac{x^2-11}{4}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{x^2-11}{4}\) là số vô tỉ \(\Rightarrow\) \(x^2\) là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(2\sqrt{2}+\sqrt{3}\) là số vô tỉ
Giả sử \(\sqrt{3}-\sqrt{2}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^2=x^2\\ \Rightarrow5-2\sqrt{6}=x^2\\ \Rightarrow\sqrt{6}=\dfrac{5-x^2}{2}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{5-x^2}{2}\Rightarrow\) \(x^2\)là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(\sqrt{3}-\sqrt{2}\) là số vô tỉ
Giải giúp mình với cần gấp lắm
\(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\)
\(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\)
\(=\frac{3+\sqrt{5}}{2}+\frac{3-\sqrt{5}}{2}=3\)
PS: Nhân lượng liên hiệp
Giải giúp mình với cần gấp lắm
\(\left(3-\sqrt{5}\right).\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)
Đặt \(\hept{\begin{cases}\sqrt{3-\sqrt{5}}=A\\\sqrt{3+\sqrt{5}}=B\end{cases}}\)
Ta có A.B = 2
(A + B)2 = 6 + 4 = 10 => A + B = \(\sqrt{10}\)
Ta có cái ban đầu
= A2 B + AB2 = AB(A + B) = \(2\sqrt{10}\)
Chứng minh:
\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}\le2\)
Giúp mình với nha mấy bạn mình cần gấp lắm huhu!!
ĐKXĐ : \(x\ge1\)
\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|\)
Xét các trường hợp :
1. Nếu \(1\le x\le2\)thì \(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\left(1-\sqrt{x-1}\right)=2\sqrt{x-1}\le2\)
2. Nếu \(x>2\) thì
\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\sqrt{x-1}+1=2\)
Gộp hai trường hợp có đpcm.
Liệu còn cách nào khác nữa ko bạn???
Rút gọn biểu thức:
A= \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{3+\sqrt{x}}\)
Giúp mình với mọi ng ơi! mình cần gấp lắm. Giúp với, mình like cho nhé