1. \(x^4-x+\frac{1}{2}>0\)
2. \(4a^4-4a^3+5a^2-2a+1>0\)
rút gọn các biểu thức
\(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
\(\frac{2}{x^2-y^2}.\sqrt{\frac{3\left(x+y\right)^2}{2}}\)(vs x>= 0;y>=0;x khác y)
\(\frac{2}{2a-1}.\sqrt{5a^2\left(1-4a+4a^2\right)}\)(a>0,5)
Rút gọn biểu thức
a,\(A=\frac{2}{x^2-y^2}\sqrt{\frac{3x^2+6xy+3y^2}{4}}\)
b, \(B=\frac{1}{2a-1}\sqrt{5a^4\left(1-4a+4a^2\right)}\)
\(\frac{\sqrt{3x^2+6xy+3y^2}}{x^2-y^2}\)
<=>\(\frac{\sqrt{3.\left(x+y\right)^2}}{\left(x-y\right).\left(x+y\right)}\)
<=>\(\frac{\sqrt{3}\left|x+y\right|}{\left(x-y\right).\left(x+y\right)}.\)
<=>\(\frac{\sqrt{3}}{x-y}\)
Bài tập 3: Cho X= a^2 + a+1. Tinh theo x giá trị của biểu thức
A= a^4 + 2a^3 +5a^2 + 4a + 4
\(A=a^4+2a^3+5a^2+4a+4\\ A=\left(a^4+a^3+a^2\right)+\left(a^3+a^2+a\right)+\left(3a^2+3a+3\right)+1\\ A=a^2\left(a^2+a+1\right)+a\left(a^2+a+1\right)+3\left(a^2+a+1\right)+1\\ A=\left(a^2+a+3\right)\left(a^2+a+1\right)+1\\ A=x\left(x+2\right)+1=x^2+2x+1=\left(x+1\right)^2\)
Rút gọn biểu thức:
a) A = \(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
b) B = \(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\) a>0 va a # 1
c) C = \(\frac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}\)
d) D = \(\frac{1}{2a-1}.\sqrt{5a^4.\left(-4a+4a^2\right)}\)
e) E = \(\frac{2}{x^2-y^2}.\sqrt{\frac{3x^2+6xy+3y^2}{4}}\)
Rút gọn:
a) \(\frac{2}{x^2-y^2}\)\(\sqrt{\frac{3\left(x+y\right)^2}{2}}\) với x\(\ge\) 0, y\(\ge\)0 và x \(\ne\) y
b) \(\frac{2}{2a-1}\)\(\sqrt{5a^2\left(1-4a+4a^2\right)}\) với a>0,5
a) \(\frac{2}{x^2-y^2}\cdot\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{\sqrt{3}\left(x+y\right)}{\sqrt{2}}=\frac{\sqrt{6}}{x-y}\)
b) \(\frac{2}{2a-1}\cdot\sqrt{5a^2\left(1-4a+4a^2\right)}=\frac{2}{2a-1}\cdot\sqrt{5a^2\left(1-2a\right)^2}\)
\(=\frac{2}{2a-1}\cdot\sqrt{5}a\left(1-2a\right)=-2\sqrt{5}a\)
rút gọn biểu thức:
\(\frac{2}{2a-1}\cdot\sqrt{5a^4\left(1-4a+4a^2\right)}\)
\(\frac{2}{2a-1}.\sqrt{5x^4\left(1-4a+4a^2\right)}\)
\(=\frac{2}{2a-1}.\sqrt{5x^4\left(2a-1\right)^2}\)
\(=\frac{2}{2a-1}.x^2.\left(2a-1\right).\sqrt{5}\)
\(=2\sqrt{5}x^2\)
Giari hệ:
\(\hept{\begin{cases}\frac{2-a}{a^3+a^2+a+1}x+\frac{a-3}{a^2-a+1}y=0\left(1\right)\\\frac{a^2-3a+2}{a^4-1}x+\frac{2a^2-4a-6}{a^3+1}y=3\left(2\right)\end{cases}}\)
Chứng minh các bất đẳng thức sau đây:
a) a4+b4+c4+1 >= 2a(b+c)
b) 4a4-4a3+5a2+2a+1 >= 0
c) (ab+bc+ca)2 >= 3abc(a+b+c)
Thanks
Chứng minh các bất đẳng thức sau đây:
a) a4+b4+c4+1 >= 2a(b+c)
b) 4a4-4a3+5a2+2a+1 >= 0
c) (ab+bc+ca)2 >= 3abc(a+b+c)
Thanks