Những câu hỏi liên quan
H24
Xem chi tiết
PQ
14 tháng 10 2018 lúc 17:47

\(1)\)\(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}\)

\(\Leftrightarrow\)\(\frac{10a+b}{b}=\frac{10b+c}{c}=\frac{10c+a}{a}\)

\(\Leftrightarrow\)\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}=\frac{10a+10b+10c}{a+b+c}=\frac{10\left(a+b+c\right)}{a+b+c}=10\)

Do đó : 

\(\frac{10a}{b}=10\)\(\Leftrightarrow\)\(a=b\)

\(\frac{10b}{c}=10\)\(\Leftrightarrow\)\(b=c\)

\(\frac{10c}{a}=10\)\(\Leftrightarrow\)\(c=a\)

\(\Rightarrow\)\(a=b=c\)

\(\Rightarrow\)\(A=\left(a-b\right)\left(b-c\right)\left(c-a\right)+2016=2016\)

\(2)\)\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)

\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)

Do đó : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Leftrightarrow\)\(10a+11b+c=11a+11b\)\(\Leftrightarrow\)\(c=a\)

\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Leftrightarrow\)\(10b+11c+a=11b+11c\)\(\Leftrightarrow\)\(a=b\)

\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Leftrightarrow\)\(10c+11a+b=11c+11a\)\(\Leftrightarrow\)\(b=c\)

\(\Rightarrow\)\(a=b=c\)

\(\Rightarrow\)\(M=\left(\frac{b}{a}+1\right)\left(\frac{c}{b}+1\right)\left(\frac{a}{c}+1\right)+2016=2.2.2+2016=2024\)

Chúc bạn học tốt ~ 

Bình luận (0)
H24
14 tháng 10 2018 lúc 17:56

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

hay \(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Do các tử số trên bằng nhau nên các mẫu số cũng bằng nhau hay \(b+c+d=a+c+d=a+b+d=a+b+c\)

Suy ra a = b =c =d

\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

Bình luận (0)
PQ
14 tháng 10 2018 lúc 18:03

\(3)\)\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Leftrightarrow\)\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\Leftrightarrow\)\(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Vì các tử bằng nhau nên mẫu cũng bằng nhau : 

+) Với \(b+c+d=a+c+d\)\(\Leftrightarrow\)\(a=b\)

+) Với \(a+b+d=a+b+c\)\(\Leftrightarrow\)\(c=d\)

+) Với \(a+c+d=a+b+d\)\(\Leftrightarrow\)\(b=c\)

\(\Rightarrow\)\(a=b=c=d\)

\(\Rightarrow\)\(A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

Chúc bạn học tốt ~ 

Bình luận (0)
AN
Xem chi tiết
AN
11 tháng 7 2017 lúc 12:02

Đặt: \(a=\frac{1+x}{1-x};b=\frac{1+y}{1-y};c=\frac{1+z}{1-z}\)

\(\Rightarrow-1< x,y,z< 1\)

Theo đề bài thì \(abc=1\)

\(\Rightarrow\frac{1+x}{1-x}.\frac{1+y}{1-y}.\frac{1+z}{1-z}=1\)

\(\Rightarrow x+y+z=-xyz\)

Thế lại bài toán ta có: 

\(\text{ Σ}\frac{a\left(3a+1\right)}{\left(a+1\right)^2}=\text{ Σ}\frac{\left(\frac{1+x}{1-x}\right)\left(3.\frac{1+x}{1-x}+1\right)}{\left(\frac{1+x}{1-x}+1\right)^2}=\text{ Σ}\frac{x^2+3x+2}{2}\)

\(=\frac{x^2+y^2+z^2+3\left(x+y+z\right)}{2}+3\)

\(=3+\frac{x^2+y^2+z^2-3xyz}{2}\)

\(\ge3+\frac{3\sqrt[3]{x^2y^2z^2}-3xyz}{2}\)

\(=3+\frac{3\sqrt[3]{x^2y^2z^2}.\left(1-\sqrt[3]{xyz}\right)}{2}\ge3\)

PS: Nè cô 

Bình luận (0)
AN
11 tháng 7 2017 lúc 12:05

Nè cô Bùi Thị Vân - Trang của Bùi Thị Vân - Học toán với OnlineMath

Bình luận (0)
BT
11 tháng 7 2017 lúc 12:28

Here :) Cho a,b,c>0 và abc=1. CMR: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
PH
7 tháng 4 2019 lúc 16:14

\(C=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(D< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow D< 1-\frac{1}{2017}< 1\)

Vậy C > D

Bình luận (0)
MH
Xem chi tiết
HT
Xem chi tiết
NG
16 tháng 1 2016 lúc 20:09

xem lại đề đi

Bình luận (0)
TN
Xem chi tiết
HN
2 tháng 1 2017 lúc 12:29

Cách 1. Áp dụng BĐT AM-GM : 

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}\)

\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)

Cách 2. Áp dụng BĐT Cauchy : \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)

Tương tự : \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\) , \(\frac{c^2}{c+d}+\frac{c+d}{4}\ge c\)\(\frac{d^2}{d+a}+\frac{d+a}{4}\ge d\)

Cộng theo vế : \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}+\frac{1}{4}.2.\left(a+b+c+d\right)\ge a+b+c+d\)

\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)

Bình luận (0)
TT
Xem chi tiết
PT
4 tháng 10 2017 lúc 21:55

nâng cao và phát triển toán 9 tập 1 :)

Bình luận (0)
PT
4 tháng 10 2017 lúc 21:57

bài thứ :  \(109\left(1\right)\)chuyên đề bất đẳng thức 

Bình luận (0)
KT
Xem chi tiết