Những câu hỏi liên quan
AM
Xem chi tiết
IC
31 tháng 8 2017 lúc 20:37

\(a^2+b^2=2ab\Leftrightarrow a^2+b^2-2ab=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)

Bình luận (0)
LP
31 tháng 8 2017 lúc 20:39

Ichigo Sứ giả thần chết xem cách này có đúng ko?

 Ta áp dụng cô-si là ra 
a^2+b^2+c^2 ≥ ab+ac+bc 
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1) 
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2) 
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3) 
cộng (1) (2) (3) theo vế: 
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc) 
=> a^2 + b^2 + c^2 ≥ ab+ac+bc 
dấu = khi : a = b = c

Bình luận (0)
NQ
31 tháng 8 2017 lúc 20:57
vì a=b suy ra: a^2+b^2=2ab =b^2+b^2=2ab =b . b+b . b=2.a.b suy ra b.[b+b]=2.a.b b.2.b=2.a.b suy ra 2bb=2ab mà a=b suy ra 2ab=2ab hay a^2+b^2=2ab chị k em cảm ơn
Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
TD
3 tháng 10 2015 lúc 6:00

tính chất của đẳng thức + cm đẳng thức

Bình luận (0)
PC
13 tháng 7 2016 lúc 14:58

kho qua

Bình luận (0)
KT
15 tháng 8 2016 lúc 20:52

mình cũng đang vướng bài đay nè

Bình luận (0)
H24
Xem chi tiết
NK
19 tháng 1 2017 lúc 22:45

+ Nếu \(a\)\(;\)\(b\) không chia hết cho 3  \(\Rightarrow\) \(a^2;\)\(b^2\)chia 3 dư 1
khi đó \(a^2+b^2\) chia 3 dư 2  \(\Rightarrow\)\(c^2\) chia 3 dư 2  (vô lý)
 \(\Rightarrow\)trường hợp  \(a\)\(b\) không chia hết cho 3 không xảy ra \(\Rightarrow\) \(abc\)\(⋮\)\(3\)                                      \(\left(1\right)\)

+ Nếu \(a\)\(;\)\(b\) không chia hết cho 5 \(\Rightarrow\)\(a^2\) chia 5 dư 1 hoặc 4 cà \(b^2\) chia 5 dư 1 hoặc 4

Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 1  \(\Rightarrow\) \(c^2\) chia 5 dư 2            (vô lí) Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 4  \(\Rightarrow\) \(c^2\) chia 5 dư 0  \(\Rightarrow\) \(c\)\(⋮\)\(5\) Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 1  \(\Rightarrow\) \(c^2\) chia 5 dư 0  \(\Rightarrow\) \(c\) \(⋮\)\(5\)Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 4  \(\Rightarrow\) \(c^2\) chia 5 dư 3            (vô lí).                                               Vậy ta luôn tìm được một giá trị của \(a,\)\(b,\)\(c\)thỏa mãn \(abc\)\(⋮\)\(5\)                                               \(\left(2\right)\)

+ Nếu  \(a,\)\(b,\)\(c\) không chia hết cho 4  \(\Rightarrow\) \(a^2,\)\(b^2,\)\(c^2\) chia  8 dư 1 hoặc 4
khi đó \(a^2+b^2\) chia  8 dư \(0,\)\(2\)hoặc
\(\Rightarrow\) c2:5 dư 1,4. vô lý => a hoặc b hoặc c chia hết cho 4                             (3)
Từ (1) (2) và (3) => abc chia hết cho 60

Bình luận (0)
H24
Xem chi tiết
HT
17 tháng 1 2017 lúc 8:07

a vừa là ước vừa là bội của b thì chắc chắn |a|=b hay a=b hoặc a=-b 
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên) 
thế b=ay vào a=bx ta được: a= axy => xy=1 vì x và y nguyên nên 
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a=b hoặc a=-b

Bình luận (0)
BM
Xem chi tiết
DB
2 tháng 10 2018 lúc 22:21

Từ a+b=c Ta được a+b-c=0

Do đó:\(\left(a+b-c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=0\)(đccm)

Bình luận (0)
HS
2 tháng 10 2018 lúc 22:37

Có thể ( chỉ là có thể thôi ) các bạn chưa học hằng đẳng thức nâng cao nên mình sẽ chứng minh và dùng nó luôn , còn các bạn cứ lấy nó mà dung , bởi vì nó cũng có thể được coi là " định lý ", đại loại thế

Bổ đề : CMR: \(\left(a+b-c\right)^2=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)

\(\left(a+b-c\right)\left(a+b-c\right)=a^2+ab-ac+ab+b^2-bc-ac-bc+c^2\)

\(=a^2+b^2+c^2+\left(ab+ab\right)-\left(ac+ac\right)-\left(bc+bc\right)\)

\(=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)

Nhờ bổ đề trên\(\Rightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=a^2+b^2+c^2+2ab-2ac-2bc=\left(a+b-c\right)^2=0\)

\(\Rightarrow\)\(a+b-c=0\)vì \(\left(a+b-c\right)\ge0\)

\(\Rightarrow\)\(a+b=c\left(DPCM\right)\)

Còn nhiều hằng đẳng thức nâng cao nữa cũng kiểu dạng này, nếu bạn muốn biết thì hãy tự chứng minh nó và áp dụng nó vào bài như một bổ đề, mình chỉ chia sẽ kinh nghiệm vậy thôi

GOOD LUCK

Bình luận (0)
HS
2 tháng 10 2018 lúc 22:39

Ở trên là bài toán đảo và muốn giải bài của bạn thì bạn chỉ cần đảo ngược nó lại (Đừng lo , mình ko chép mẫu đâu)

Bình luận (0)
ZZ
Xem chi tiết
NC
Xem chi tiết
TC
17 tháng 12 2016 lúc 21:54

a) Nếu một trong hai số a và b là chẵn thì => a . b . ( a + b ) là một số chẵn => chia hết cho 2

   Nếu cả hai số a và b đều là số lẻ => a + b là một số chẵn = > a . b . ( a + b ) là một số chẵn => chia hết cho 2

  Nếu cả hai số a và b đều là số chẵn => a . b . ( a + b ) là một số chẵn => chia hết cho 2 

 Vậy với mọi trường hợp thfi a . b . ( a + b ) luôn chia hết cho 2

                            ( đpcm )

b) Để a + b không chia hết cho 2 => hai số a và b không cùng tính chẵn lẻ => thì một trong hai số là số chẵn

Khi một trong hai số a và b là chẵn thì tích a x b cũng sẽ là một số chẵn => a x b chia hết cho 2

Vậy nếu a + b không chia hết cho 2 thi tích a x b chia hết cho 2

                               ( đpcm )

Bình luận (0)
NC
17 tháng 12 2016 lúc 22:01

ddpcm là j vậy bạn

Bình luận (0)
NB
Xem chi tiết
LH
9 tháng 7 2016 lúc 21:07

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

Có:

\(\frac{ab+ad}{b\left(b+d\right)}< \frac{ab+bc}{b\left(b+d\right)}\)

\(\Rightarrow\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

\(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)

\(\Rightarrow\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Bình luận (0)