Những câu hỏi liên quan
H24
Xem chi tiết
NT
Xem chi tiết
VV
7 tháng 11 2015 lúc 11:34

a) A=x(x-2) 

Để A>0

TH1:  x>0 và x-2 < 0 ==> 0<x<2

TH2: x< 0 và x-2 >0 ===> Không có giá trị nào của x thỏa mãn;

Vậy : Để A< 0 thì 0<x<2

Để A lớn hơn hoặc bằng 0 thì :

TH1: x >=0 và x-2>=0 ===> x>=2

TH2 : x<=0 và x-2<=2 ===> x<=2

như vậy, để A lớn hơn hoặc bằng 0 thì x>=2 hoặc x<=2

Bình luận (0)
NT
Xem chi tiết
H24
6 tháng 11 2015 lúc 20:12

để A = x.(x-2) >=0 thi

TH1

x< hoac bang 0               =>x nho hon hoc bang 2

x-2< hoac bang => x<2   =>x nho hon hoc bang 2

TH2

x> hoac bang 0

x-2> hoac bang 0 => xon hon hoac bang 2

                         Vay x lon hon hoac bang 2 hoac nho hon hoac bang 2

                                                                                                                 By Tuấn

Bình luận (0)
NT
Xem chi tiết
NH
8 tháng 8 2024 lúc 18:29

Bài 1

A = \(x\)(\(x-2\))

\(x=0\)\(x-2\) = 0 ⇒ \(x=2\)

Lập bảng ta có:

\(x\)      -   0             +                   2        +
\(x-2\)     -                    -                   0       +
A =\(x\left(x-2\right)\)      +  0             -                    0         +

Để A ≥ 0 thì  \(x\) ≥ 0 hoặc \(x\ge\) 2

Để A < 0  thì   0 < \(x\) < 2 

 

Bình luận (0)
NH
8 tháng 8 2024 lúc 18:36

Bài 1

b; \(\dfrac{-x+2}{3-x}\)   

    - \(x\) + 2 = 0 ⇒ \(x=2\)

      3 - \(x=0\) ⇒ \(x=3\)

Lập bảng:

\(x\)               2                                   3
-\(x+2\)        +     0     -                                  - 
3 - \(x\)        +           +                            0    -
A = \(\dfrac{-x+2}{3-x}\)        +            -                                  +

B > 0 ⇔   \(x< 2\) hoặc \(x>3\)

B < 0 ⇔ 2 < \(x\) < 3

  

    

Bình luận (0)
NH
8 tháng 8 2024 lúc 18:42

 Bài 2:

a; |\(x\)| < 2

    ⇒ \(x^2\) < 4

     ⇒ (\(x^2\) - 4) < 0

      ⇒ (\(x-2\))(\(x+2\)) < 0

     \(x-2\) = 0 ⇒ \(x=2\)\(x+2\) = 0 ⇒ \(-2\)

  Lập bảng xét dấu ta có:

\(x\)            - 2                                  2
\(x-2\)     -                         -                  0 + 
\(x+2\)      -       0               +                       -
(\(x-2\))(\(x+2\)) +                             -                       +

Theo bảng trên ta có:

   (\(x-2\))(\(x+2\)) < 0 ⇔ - 2 < \(x\) < 2

Vậy -2 < \(x\) < 2 

 

Bình luận (0)
NI
Xem chi tiết
NI
Xem chi tiết
NN
Xem chi tiết
LQ
Xem chi tiết
DD
Xem chi tiết
HH
4 tháng 3 2021 lúc 19:00

\(a=-1< 0;\Delta=\left(2\sqrt{m}-1\right)^2+4\left(\sqrt{m}-m\right)=4m-4\sqrt{m}+1+4\sqrt{m}-4m=1>0\)

a/ \(f\left(x\right)\ge0\) vô nghiệm \(\Leftrightarrow f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\left(tm\right)\\\Delta< 0\left(voly\right)\end{matrix}\right.\)

Vậy ko tồn tại m để ....

b/ \(f\left(x\right)\ge0,\forall x\in\left[1;2\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}1< x_1< x_2\\x_1< x_2< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-1.f\left(1\right)>0\\\dfrac{x_1+x_2}{2}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}-1.f\left(2\right)>0\\\dfrac{x_1+x_2}{2}-2< 0\end{matrix}\right.\end{matrix}\right.\)

\(\left(1\right)\left\{{}\begin{matrix}-1+2\sqrt{m}-1-m+\sqrt{m}< 0\\\sqrt{m}-\dfrac{1}{2}-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-3\sqrt{m}+2>0\\\sqrt{m}>\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}0< m< 1\\m>2\end{matrix}\right.\\m>\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow m>\dfrac{9}{4}\)

 

\(\left(2\right)\left\{{}\begin{matrix}-4+4\sqrt{m}-2-m+\sqrt{m}< 0\\\sqrt{m}-\dfrac{1}{2}-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-5\sqrt{m}+6>0\\\sqrt{m}< \dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}0< m< 2\\m>3\end{matrix}\right.\\0\le m< \dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< m< 2\\3< m< \dfrac{25}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m>\dfrac{9}{4}\\0< m< 2\\3< m< \dfrac{25}{4}\end{matrix}\right.\)

Bình luận (0)