\(\frac{x}{5}=\frac{y}{4}=\frac{z}{2}\)và x+y=27
tìm x,y,z
a) 4x=5y và 3x-2y=35
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và x+y+z= -90
c) x:y:z=3:5:(-2) và 5x-y+3z=124
d) \(\frac{x-4}{3}=\frac{y-6}{3}=\frac{z-8}{4}\)và x+y+z=27
e) \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và 4x-3y+2z=36 Giúp mk vs mk đang cần gấp, trc 20h tối nay nhé , mk sẽ tik thật nhiều
Tìm x,y,z biết rằng: \(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-1}{4}\) và 2x-3y-2z=-27
Ta có: \(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-1}{4}\) \(\Leftrightarrow\frac{2x-2}{10}=\frac{3y-6}{9}=\frac{2z-2}{8}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x-2}{10}=\frac{3y-6}{9}=\frac{2z-2}{8}=\frac{2x-2-3y+6-2z+2}{10-9-8}=\frac{-27+6}{-7}=\frac{-21}{-7}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{5}=3\\\frac{y-2}{3}=3\\\frac{z-1}{4}=3\end{cases}\Rightarrow}\hept{\begin{cases}x-1=15\\y-2=9\\z-1=12\end{cases}\Rightarrow}\hept{\begin{cases}x=16\\y=11\\z=13\end{cases}}\)
Vậy...
Tìm x,y,z biết:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và x+y+z=27
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)
=>\(\begin{cases}x=6\\y=9\\z=12\end{cases}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = x + y + z / 2 + 3 + 4 = 27/9 = 3
x/2 = 3 => x = 3 . 2 = 6
y/3 = 3 => y = 3 . 3 = 9
z/4 = 3 => z = 3 . 4 = 12
Vậy x = 6; y = 9 và z = 12.
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{y}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)
=> x/2 = 3 => x = 3.2 = 6
=> y/3 = 3 => y = 3.3 = 9
=> z/4 = 3 => z = 3.4 = 12
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}\)và x+2y+z =10
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}\)và x+y=18
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và 5x-z=20
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và 2x+y-z=9
2x=3y=5z và x-2y+3z=65
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
bài 1: cho x, y thuộc Q. cmr:
|x + y| =< |x| + |y|
bài 2: tính:
\(A=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
bài 3: cho a + b + c = a^2 + b^2 + c^2 = 1 và x : y : z = a : b : c.
cmr: (x + y + z)^2 = x^2 + y^2 + z^2
1
fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffffEz lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Bài 3:
Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) (vì a + b + c = 1)
Do đó: \(\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (vì a2 + b2 + c2 = 1)
Vậy: (x + y + z)2 = x2 + y2 + z2
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}\)và x-y+z=-10
\(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}\)và x+y-z=-40
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{7}\)và x-y+z=144
\(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}\)và x+y+z=72
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\) và x+y-z=21
a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)
\(\Rightarrow x=-25;y=-35;z=-20\)
b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)
\(\Rightarrow x=-25;y=20;z=35\)
a) tìm x,y biết
\(\frac{x}{-3}=\frac{y}{5}\)và \(x\cdot y=-\frac{5}{27}\)
\(\frac{\frac{-1}{2}}{2x-1}=\frac{\frac{0.2}{-3}}{5}\)
b) Tìm x,y,z biết rằng \(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{4}z\)và x - y = 15
Có: \(\frac{\frac{-1}{2}}{2x-1}=\frac{\frac{0,2}{-3}}{5}\)\(\Rightarrow\left(2x-1\right).\frac{0,2}{-3}=\frac{-1}{2}.5\Leftrightarrow\left(2x-1\right).\frac{0,2}{-3}=\frac{-5}{2}\)\(\Leftrightarrow2x-1=\frac{-75}{2}\Leftrightarrow2x=\frac{-73}{2}\Leftrightarrow x=\frac{-73}{4}\)
Vậy x=-73/4
Tìm x, y, z biết:
a) \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
b) \(\frac{x}{2}=\frac{y}{3};y:5=z:4\) và x - y + z = -49
c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và x + 2y -3z = -20
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
Tìm x;y;z biết
a) \(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\)
c) \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x+y+z=120
d) \(\frac{xy+1}{9}=\frac{yz+2}{15}=\frac{xz+3}{27}\) và xy+yz+xz=11
e) \(\frac{x+10}{7}=\frac{y+6}{9}=\frac{27-z}{11}\) và \(3x^2+7=199\)